How can I prove that $\operatorname{Aut}(C_p\times C_p)\simeq GL_2(\mathbb Z/p\mathbb Z)$?
No theorical argument came to my mind, so I'm trying to build explicitly an isomorphism $\phi\colon\operatorname{Aut}(C_p\times C_p)\longrightarrow GL_2(\mathbb Z/p\mathbb Z)$, but I'm stuck.
Can someone help me please? Thank you all