Prove that if $E \subset [0,1]$ has positive measure, then the set $E-E = \{x-y : x,y \in E\}$ contains an interval centered around zero. Hint: consider the function $h(x)=\textbf{1}_{-E} \star \textbf{1}_{E} $.
Ideas: use the continuity of h(x)?
Prove that if $E \subset [0,1]$ has positive measure, then the set $E-E = \{x-y : x,y \in E\}$ contains an interval centered around zero. Hint: consider the function $h(x)=\textbf{1}_{-E} \star \textbf{1}_{E} $.
Ideas: use the continuity of h(x)?
$$h(x)= \int 1_E(y)1_{-E}(x-y)dy= \int 1_E(y)1_{E(x+E)}(y)dy=m(E\cap (x+E))$$ Prove that $h$ is continuous. Then observe that $h(0)=m(E)>0$, so $0\in h^{-1}(0,\infty)$ which is an open set. Therefore, there exists an open interval around $0$, say $(-\varepsilon,\varepsilon)$ contained in $h^{-1}(0,\infty)$. Show that this is the desired interval.