$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left( #1 \right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{-\,\partiald[2]{{\rm u}\pars{x,t}}{x} + \partiald{{\rm u}\pars{x,t}}{t} = 0}$
leads to $\ds{\partiald{}{x}\bracks{\color{#f00}{-\partiald{{\rm u}\pars{x,t}}{x}}} + \partiald{{\rm u}\pars{x,t}}{t} = 0}$ which is the
Continuity Equation which guarantees the particle conservation number. In particular,
$\ds{{\rm J}_{x}\pars{x,t} = \color{#f00}{-\partiald{{\rm u}\pars{x,t}}{x}}}$ is
the Current Particle $\ds{x}$-component.
$\ds{\color{#f00}{\left.-\,\partiald{{\rm u}\pars{x,t}}{x}\right\vert_{x\ =\ R}} = 0}$ guarantees that the particles do not cross the boundary at $\ds{x = R}$. In another words, the 'wall' at $\ds{x = R}$ confines the particles.