Quoting from Ana Cannas da Silva's book on Symplectic Geometry: "As an exercise in Fourier series, show the Wirtinger inequality: for $f\in C^1([a,b])$, with $f(a)=f(b)=0$ we have $$ \int_a^b\Big|\frac{\mathrm{d}f}{\mathrm{d}t}\Big|^2\mathrm{d}t \ge\frac{\pi^2}{(b-a)^2} \int_a^b\left|\ f\right|^2\mathrm{d}t." $$ I already found a few questions about this topic in the site, but I couldn't actually grasp what's happening here. Also, I would very much like you to show me where I go wrong with my try, which is sketched below.
I know that, for $f\in \mathcal{L}^2([0,2\pi])\supset C^1([0,2\pi])$, I can expand: $$ f(t)=\sum_{n=-\infty}^{+\infty}c_n e^{int},\ \ \ c_n=\frac{1}{2\pi}\int_0^{2\pi}\mathrm{d}t\ e^{-int}f(t). $$ Rescaling $t \to \omega (t - a)$, where $\omega = 2\pi/(b-a)$, we can get a more general form for $f\in C([a,b])$: $$ f(t)=\sum_{n=-\infty}^{+\infty}c_n e^{in\omega t},\ \ \ c_n=\frac{1}{b-a}\int_a^{b}\mathrm{d}t\ e^{-in\omega t}f(t). $$ Now, having: $$ \frac{\mathrm{d}}{\mathrm{d}t}f(t) = \sum_{n=-\infty}^{+\infty}\tilde{c}_ne^{i\omega nt},\ \ \tilde{c}_n=\frac{1}{b-a}\int_a^b\mathrm{d}t\ e^{-i\omega nt}\frac{\mathrm{d}}{\mathrm{d}t}f(t). $$ Using the fact that $\,f(a)=f(b)=0$ we get: $$ \tilde{c}_0 = \frac{1}{b-a}\int_a^b\mathrm{d}t \frac{\mathrm{d}}{\mathrm{d}t} f(t) = \frac{f(b)-f(a)}{b-a} =0 \longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}f(t) = \sum_{n\in\mathbb Z\setminus\{0\}}\tilde{c}_n e^{i\omega nt} $$ Now deriving the series expansion of $f$ yields: $$ \frac{\mathrm{d}}{\mathrm{d}t}f(t) = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=-\infty}^{+\infty}c_n e^{in\omega t} = \sum_{n=-\infty}^{+\infty}(in\omega)c_n e^{in\omega t}=\sum_{n\in\mathbb Z\setminus\{0\}}(in\omega)c_n e^{in\omega t} $$ Comparing the two expressions we establish: $\tilde{c}_n = i\omega n c_n$, for $n\not= 0$. Parseval's Equality reads here for $\mathrm{d}f/\mathrm{d}t$: $$ \int_a^b\left|\frac{\mathrm{d}f}{\mathrm{d}t}\right|^2\mathrm{d}t= \sum_{n\in\mathbb Z\setminus\{0\}} |\tilde{c_n}|^2 = \omega^2\sum_{n\in\mathbb Z\setminus\{0\}} n^2 |c_n|^2 \ge \omega^2\sum_{n\in\mathbb Z\setminus\{0\}} |c_n|^2 = \omega^2 \left(\int_a^b\mathrm{d}t\left|f(t)\right|^2-|c_0|^2\right) $$ where in the last passage we used Parseval's Equality for $f$: $\int_a^b|f|^2\mathrm{d}t=\sum_{n=-\infty}^{+\infty}|c_n|^2$.
We are now left with finding a suitable way of estimating $|c_0|^2$: $$ |c_0|^2 = \left|\frac{1}{b-a}\int_a^b\mathrm{d}t\ f(t)\right|^2, $$ thus $$ \int_a^b\left|\frac{\mathrm{d}f}{\mathrm{d}t}\right|^2\mathrm{d}t \ge \frac{4\pi^2}{(b-a)^2}\left(\int_a^b\left|f\right|^2\mathrm{d}t - \frac{1}{(b-a)^2}\left|\int_a^bf\mathrm{d}t\right|^2\right). $$ Which is not exactly what I wanted.
Please lend me a hand!