$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
With the identities:
\begin{align}
{1 \over 1 + \pars{x + y}^{2}}
&=\int_{-\infty}^{\infty}{\delta\pars{x + y - z} \over 1 + z^{2}}\,\dd z
\\[3mm]
\delta\pars{x + y - z} &=\int_{-\infty}^{\infty}
\expo{\ic k\pars{x\ +\ y\ -\ z}}\,{\dd k \over 2\pi}
\end{align}
we'll have
\begin{align}
{\rm F}\pars{y}&
=\color{#66f}{\large%
\int_{-\infty}^{\infty}{\dd x \over \pars{1 + x^{2}}\bracks{1 + \pars{x + y}^{2}}}}
\\[8mm]&=\int_{-\infty}^{\infty}\expo{\ic ky}
\pars{\int_{-\infty}^{\infty}{\expo{\ic kx} \over 1 + x^{2}}\,\dd x}
\pars{\int_{-\infty}^{\infty}{\expo{-\ic kz} \over 1 + z^{2}}\,\dd z}
\,{\dd k \over 2\pi}
\\[8mm]&=\int_{-\infty}^{\infty}\expo{\ic ky}
\verts{\int_{-\infty}^{\infty}{\expo{\ic kx} \over 1 + x^{2}}\,\dd x}^{2}
\,{\dd k \over 2\pi}
=\int_{-\infty}^{\infty}\expo{\ic ky}
\verts{2\pi\ic\,{\expo{\ic\verts{k}\ic} \over 2\ic}}^{2}\,{\dd k \over 2\pi}
\\[8mm]&=\half\,\pi\int_{-\infty}^{\infty}\expo{\ic ky}\expo{-2\verts{k}}\,\dd k
=\half\,\pi\int_{-\infty}^{\infty}\cos\pars{ky}\expo{-2\verts{k}}\,\dd k
=\pi\,\Re\int_{0}^{\infty}\expo{\pars{-2 + y\ic}k}\,\dd k
\\[8mm]&=\pi\,\Re\pars{1 \over 2 - y\ic}
\end{align}
\begin{align}
{\rm F}\pars{y}&
=\color{#66f}{\large%
\int_{-\infty}^{\infty}{\dd x \over \pars{1 + x^{2}}\bracks{1 + \pars{x + y}^{2}}}}
=\color{#66f}{\large{2\pi \over y^{2} + 4}}
\end{align}