Show that $G_{2^n}\le A_{2^n}$ by using induction on n.
I've proven the base case in the previous exercise:
Let $G_2=\sqrt{a_1a_2}$ and $A_2=\frac{1}{2}(a_1+a_2)$ and $a_1,a_2 \in \mathbb{R}$ $$\sqrt{a_1a_2}\le \frac{1}{2}(a_1+a_2)$$ $$2\sqrt{a_1a_2}\le (a_1+a_2)$$ $$4a_1a_2\le a_1^2+2a_1a_2+a_2^2$$ $$0\le a_1^2-2a_1a_2+a_2^2$$ $$0\le (a_1-a_2)^2$$
which is true for all real numbers.
Where I'm having the issue is adding the $(k+1)$ to the inequality.
For k: $G_{2^k} = (a_1a_2\cdots a_{2^{k}})^{\frac{1}{2^{k}}}$
For $2^{k+1}$:
$G_{2^{k+1}} = ((a_1a_2\cdots a_{2^{k}})^{\frac{1}{2^k}})^{\frac{k}{k+1}}\cdot a_{2^{k+1}}^{\frac{1}{2^{k+1}}}$
Am I on the right track here?