How to find out the $P_{v}(E/\mathbb{Q},X)$ theoretically given below in the definition of $L$-functions for elliptic curves over $\mathbb{Q}$ $?$ Please cite some references for the same.
For an elliptic curve $E$ over a number field $\mathbb{Q}$, the $L$-function $L(E/\mathbb{Q},s)$ is given by the Euler product
$$ L(E/\mathbb{Q},s)=\prod_{v}L_{v}(E/\mathbb{Q},s)=\prod_{v}P_{v}(E/\mathbb{Q},v^{-s})^{-1}, $$
where $v$ runs over primes of $\mathbb{Q}$ and the polynomials $ P_v(E/\mathbb{Q},T) $ depending on the reduction type of $E$ over $ \mathbb{Q}_{p} $ are given explicitly by:
$$ P_{v}(E/\mathbb{Q},X) = \begin{cases} 1-a_{v}X+vX^{2}, & \text{good reduction} \\ 1-X, & \text{split multiplicative reduction} \\ 1+X, & \text{non-split multiplicative reduction} \\ 1, & \text{additive reduction} \end{cases} $$
where $ a_{v}= v+1- \mid\widetilde{E}(\mathbb{F}_{v})\mid$ and $\sim$ is reduction of $E$ at $v$.