The Riemann tensor has its component expression: $R^{\mu}_{\nu\rho\sigma}=\partial_{\rho}\Gamma^{\mu}_{\sigma\nu}-\partial_{\sigma}\Gamma^{\mu}_{\rho\nu}+\Gamma^{\mu}_{\rho\lambda}\Gamma^{\lambda}_{\sigma\nu}-\Gamma^{\mu}_{\sigma\lambda}\Gamma^{\lambda}_{\rho\nu}.$
It is straight forward to prove the antisymmetry of $R$ in the last two indices; but how to prove the antisymmetry in the first two ones without assuming symmetric connection/torsion-free metric?
Switching $X,Y$
$R(Y,X)Z=\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z+ \nabla_{[Y,X]}Z = -(\nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z - \nabla_{[X,Y]}Z) = -R(X,Y)Z$
– qqo Nov 21 '18 at 05:29