We'll follow the approach suggested by alex.jordan. By taking logs again we get the equation
$$
\log x! + \log\log x = \log\log n.
$$
The $\log x!$ term is the dominant term on the left-hand side so it will be the main source of information about $x$. It's clear that $x \to \infty$ as $n \to \infty$, and by rearranging we note that
$$
\log x! = \log\log n - \log\log x < \log\log n
$$
for $x$ large enough. Now
$$
\log x! = x\log x + O(x) > \frac{1}{2} x\log x
$$
for $x$ large enough, so
$$
x \log x < 2 \log\log n
$$
for $x$ large enough. Taking the Lambert $W$ function of both sides yields
$$
\log x < W(2\log\log n)
$$
since $W(x\log x) = \log x$, whence
$$
x < e^{W(2\log\log n)} = \frac{2\log\log n}{W(2\log\log n)} = O\left(\frac{\log\log n}{\log\log\log n}\right).
$$
To obtain the last bound we used the fact that
$$
W(z) = \log z + O(\log\log z)
$$
as derived in this answer. We'll now bootstrap this crude estimate into the previous estimates to obtain a sharper one. The approximation $\log x! = x\log x + O(x)$ becomes
$$
\log x! = x\log x + O\left(\frac{\log\log n}{\log\log\log n}\right),
$$
which allows us to rewrite the equation
$$
\log x! = \log\log n - \log\log x
$$
as
$$
x\log x + O\left(\frac{\log\log n}{\log\log\log n}\right) = \log\log n + O(\log\log\log\log n).
$$
or just
$$
x\log x = \log\log n + O\left(\frac{\log\log n}{\log\log\log n}\right).
$$
We then have
$$
\begin{align}
x &= \frac{\log\log n + O\left(\frac{\log\log n}{\log\log\log n}\right)}{W\left[\log\log n + O\left(\frac{\log\log n}{\log\log\log n}\right)\right]} \\
&= \frac{\log\log n + O\left(\frac{\log\log n}{\log\log\log n}\right)}{\log\left[\log\log n + O\left(\frac{\log\log n}{\log\log\log n}\right)\right] + O(\log\log\log\log n)} \\
&= \frac{\log\log n + O\left(\frac{\log\log n}{\log\log\log n}\right)}{\log\log\log n + \log\left[1+O\left(\frac{1}{\log\log\log n}\right)\right] + O(\log\log\log\log n)} \\
&= \frac{\log\log n + O\left(\frac{\log\log n}{\log\log\log n}\right)}{\log\log\log n + O(\log\log\log\log n)} \\
&= \frac{\frac{\log\log n}{\log\log\log n} + O\left(\frac{\log\log n}{(\log\log\log n)^2}\right)}{1 + O\left(\frac{\log\log\log\log n}{\log\log\log n}\right)} \\
&= \left[\frac{\log\log n}{\log\log\log n} + O\left(\frac{\log\log n}{(\log\log\log n)^2}\right)\right]\left[1+O\left(\frac{\log\log\log\log n}{\log\log\log n}\right)\right] \\
&= \frac{\log\log n}{\log\log\log n} + O\left(\frac{(\log\log n)(\log\log\log\log n)}{(\log\log\log n)^2}\right).
\end{align}
$$
This last part was pretty brutal but at least we wound up with a rigorous error bound. In summary,
$$
x = \frac{\log\log n}{\log\log\log n} + O\left(\frac{(\log\log n)(\log\log\log\log n)}{(\log\log\log n)^2}\right)
$$
as $n \to \infty$.
If we desired, we could bootstrap again with this estimate. Before doing so, let us introduce the notation
$$
\begin{align}
&\log\log n = L_2(n), \\
&\log\log\log n = L_3(n), \\
&\log\log\log\log n = L_4(n),
\end{align}
$$
so that the last estimate can be written
$$
x = \frac{L_2(n)}{L_3(n)} + O\left(\frac{L_2(n)L_4(n)}{L_3(n)^2}\right).
$$
We then find that
$$
\begin{align}
\log x! &= x \log x - x + O(\log x) \\
&= x \log x - \frac{L_2(n)}{L_3(n)} + O\left(\frac{L_2(n)L_4(n)}{L_3(n)^2}\right),
\end{align}
$$
so that $\log x! = \log\log n - \log\log x$ becomes
$$
x\log x = L_2(n) - \frac{L_2(n)}{L_3(n)} + O\left(\frac{L_2(n)L_4(n)}{L_3(n)^2}\right),
$$
yielding
$$
x = \frac{L_2(n) - \frac{L_2(n)}{L_3(n)} + O\left(\frac{L_2(n)L_4(n)}{L_3(n)^2}\right)}{W\left[L_2(n) - \frac{L_2(n)}{L_3(n)} + O\left(\frac{L_2(n)L_4(n)}{L_3(n)^2}\right)\right]}.
$$
We can then use $W(z) = \log z - L_2(z) + O\left(\frac{L_2(z)}{\log z}\right)$, which also follows from this other answer, to obtain the final result of
$$
x = \frac{L_2(n)}{L_3(n)} + \frac{L_2(n)(1-L_4(n))}{L_3(n)^2} + O\left(\frac{L_2(n)L_4(n)}{L_3(n)^3}\right).
$$
as $n \to \infty$.