This counter example that shows that the answer is no in general:
- For each integer $n$ define $g_n$ to be a nonnegative continuous function on $[0,1]$ which equals $0$ except on intervals of the form $I_{n,k}=\big[\frac{k}{n},\frac{k}{n}+\frac{1}{2^n}\big]$, $0\leq k<n$, where
$$\int_{I_{nk}}g_n=\frac1n$$
One can for instance use piecewise linear functions that take large values at points $k/n$, $0\leq k<n$.
- This sequence converges to $0$ in measure: $m\big(|g_n|>\varepsilon\big)\leq m\big(g_n\neq0\big)\leq n 2^{-n}\xrightarrow{n\rightarrow\infty}0$ for all $\varepsilon>0$.
- One can then take a subsequent $g_{n'}$ which converges to $0$ $m$-a.s. For sake of simplicity, let us denote the subsequence as $g_n$ (abuse of notation if you will)
- Claim: Let $f\in\mathcal{C}[0,1]$.
$$\lim_n\int f g_n\,dm = \int f\,dm\tag{1}\label{one}$$
One can appeal to uniform continuity to get for any $\varepsilon >0$, a $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta$. Taking $n$ sufficiently large (e.g. $n>\frac{1}{\delta}$)
$$
\Big(f\big(\frac{k}{n}\big) -\varepsilon\Big)g_n\mathbb{1}_{\big[\tfrac{k}{n},\tfrac{k+1}{n}\big]}\leq f g_n\mathbb{1}_{\big[\tfrac{k}{n},\tfrac{k+1}{n}\big]}\leq \Big(\varepsilon + f\big(\frac{k}{n}\big)\Big)g_n\mathbb{1}_{\big[\tfrac{k}{n},\tfrac{k+1}{n}\big]}
$$
Integration gives
$$
\Big( f\big(\frac{k}{n}\big) -\varepsilon\Big)\frac{1}{n}\leq \int_{\big[\tfrac{k}{n},\tfrac{k+1}{n}\big]} f g_n\,dm \leq \Big(\varepsilon + f\big(\frac{k}{n}\big)\Big)\frac{1}{n}
$$
Adding over all $0\leq k<n$ results in
$$
\Big|\int_I fg_n\,dm -\sum^{n-1}_{k=0}f\big(\frac{k}{n}\big)\frac{1}{n}\Big|\leq\varepsilon
$$
As $f$ is continuous, $\sum^{n-1}_{k=0}f\big(\frac{k}{n}\big)\frac{1}{n}\xrightarrow{n\rightarrow\infty}\int_If\,dm$ and the claim follows.
- This gives a negative answer to the question in Rudin's problem by taking $\mu=m$.
Edit: As pointed out by @hdci, the sequence $g_n$ in fact converges to $0$ $m$-a.s. already. Thus, there is no need to extract a subsequence $g_{n'}$ with that property.
Here is prove that $g_n$ converges to $0$ $m$-a.s:
Define
$$S^*=\limsup_nS_n=\bigcap_{n\geq1}\bigcup_{k\geq n}S_k$$
$S^*$ is the set of $x\in I=[0,1]$ that belong to infinitely many $S_n$'s. Thus, for $x\in I\setminus S^*$, there is $n_x\in\mathbb{N}$ such that $x\in I\setminus S_n$ for all $n>n_x$ and so, by definition $g_n(x)=0$ for all $n>n_x$.
$$m(S^*)=\lim_nm\Big(\bigcup_{k\geq n}S_k\Big)\leq \lim_{n\rightarrow\infty}\sum_{k\geq n}k2^{-k}=0$$
This shows that $g_n\xrightarrow{n\rightarrow\infty}0$ $m$-a.s. in $I$.