Consider $A\subseteq I$ , with $I$ countable.
Define:
$(1)\quad \mathcal{D}^A:\Omega\rightarrow I \text{ , given by}\quad \mathcal{D}^A(\omega):=\inf\{t\geq 0:X_t(\omega)\in A \} \text{ (Hitting time for continuous Markov chain)}$
$(2)\quad \mathcal{H}^A:\Omega\rightarrow I \text{ , given by}\quad \mathcal{H}^A(\omega):=\inf\{ n\geq 0:Y_n(\omega)\in A \}$ (Hitting time for the jump chain)
In Chapter 3 of J. Norris's book Markov Chains, the author states that: $\{ \mathcal{D}^A<\infty \}=\{\mathcal{H}^A<\infty \}$
The following is my attempt at proving this result.
Suppose by absurd that $\{ \mathcal{D}^A<\infty \}\not\subset\{\mathcal{H}^A<\infty \}\iff \exists \text{ }\tilde{\omega}\in\Omega:\tilde{\omega}\in\{ \mathcal{D}^A<\infty \} \text{ }\&\text{ } \tilde{\omega}\not\in\{ \mathcal{H}^A<\infty \} .$
Then , follow that:
$(i)\quad \exists\text{ }\tilde{t}\geq 0:\mathcal{D}^A(\tilde{\omega})=\tilde{t},\text{ i.e , }\tilde{t}=\inf{\{t\geq 0:\tilde{X}_t:=X_t(\tilde{\omega})\in A\}}; $
$(ii)\quad \forall n\geq 0 ,\tilde{Y}_n:=Y_n(\tilde{\omega}):=X_{J_n}(\tilde{\omega})\not\in A \text{ , with }J_n\text{ jump time}$
Particularly $\tilde{Y}_0:=\tilde{X}_0\not\in A $ (Remeber $J_0:=0$), then $\tilde{X}_t\neq \tilde{X}_0$.
However, $\tilde{t}$ is the first time at which $\tilde{X}_t\in A$, So it is the first time at which they differ and therefore $\tilde{t}=J_1:=\inf{\{t\geq 0:\tilde{X}_t\neq\tilde{X_0} \}}.$
Then $\tilde{Y}_1:=\tilde{X}_{J_1}=\tilde{X}_{\tilde{t}}\in A$
Which is in contradiction with item (ii).
I believe the other inclusion would be similar.
My questions are:
Is the way I approached this correct?
Is there a more straightforward way to demonstrate this?