I am interested in the solution to this integral:
$$ I := \int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2(x^2 + 1)} \, dx. $$
My question:
- How can I solve this integral differently, apart from Residue Theorem or my approach?
I use a version of Feynman's trick: introduce a parameter and differentiate under the integral sign. Define $$ I(t) := \int_{-\infty}^{\infty} \frac{\sin^2(tx)}{x^2(x^2 + 1)} \, dx. $$
Then the value we seek is simply $ I(1).$
Feynman's Trick - Differentiate under the integral sign
First derivative: \begin{aligned} I'(t) &= \int_{-\infty}^{\infty} \frac{2x \sin(tx) \cos(tx)}{x^2(x^2 + 1)} \, dx \\ &= \int_{-\infty}^{\infty} \frac{\sin(2tx)}{x(x^2 + 1)} \, dx \end{aligned}
Second derivative: $$ I''(t) = 2 \int_{-\infty}^{\infty} \frac{\cos(2tx)}{x^2 + 1} \, dx. $$
Third derivative:
\begin{aligned} I^{(3)}(t) &= -4 \int_{-\infty}^{\infty} \frac{x \sin(2tx)}{x^2 + 1} \, dx \\ &= -4 \int_{-\infty}^{\infty} \frac{x^2}{x^2 + 1} \cdot \frac{\sin(2tx)}{x} \, dx. \end{aligned}
Now use the identity
$$
\frac{x^2}{x^2 + 1} = 1 - \frac{1}{x^2 + 1},
$$
so
\begin{aligned}
I^{(3)}(t) &= -4 \int_{-\infty}^{\infty} \frac{\sin(2tx)}{x} \, dx + 4 \int_{-\infty}^{\infty} \frac{\sin(2tx)}{x(x^2 + 1)} \, dx \\
&= -4 \cdot \pi + 4I'(t),
\end{aligned}
using the Dirichlet integral, which is well-known (and can be solved similarly using Feynman's trick): $$ \int_{-\infty}^{\infty} \frac{\sin(ax)}{x} \, dx = \pi \cdot \text{sgn}(a) = \pi \quad \text{for } a > 0. $$
Thus, we have the differential equation: $$ I^{(3)}(t) - 4I'(t) = -4\pi. $$
Quickly solving the differential equation
$$ I^{(3)}(t) - 4I'(t) = -4\pi. $$
The homogeneous equation: $$ y^{(3)} - 4y' = 0 \quad \Rightarrow \quad r(r^2 - 4) = 0 \quad \Rightarrow \quad r = 0, \pm 2. $$
The general solution to the homogeneous part is: $$ I_{\text{hom}}(t) = c_1 + c_2 e^{2t} + c_3 e^{-2t}. $$
Try a particular solution of the form ( I_p(t) = At ). Then: $$ I_p^{(3)}(t) - 4I_p'(t) = -4A = -4\pi \Rightarrow A = \pi. $$
So the full general solution is: $$ I(t) = c_1 + c_2 e^{2t} + c_3 e^{-2t} + \pi t. $$
With a few properties of $I(t)$, one can set up equations to determine the coefficients.
$I(0) = \int_{-\infty}^{\infty} \frac{\sin^2(0)}{x^2(x^2 + 1)} \, dx = 0$,
$I'(0) = \int_{-\infty}^{\infty} \frac{\sin(0)}{x(x^2 + 1)} \, dx = 0$,
$I''(0) = 2 \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} \, dx = 2\pi $.
So:
$c_1 + c_2 + c_3 = 0$,
$2c_2 - 2c_3 + \pi = 0$,
$4c_2 + 4c_3 = 2\pi$.
From the third equation:
$$ c_2 + c_3 = \frac{\pi}{2}. $$
From the second:
$$ c_2 - c_3 = -\frac{\pi}{2}. $$
Solving gives:
$c_2 = 0$,
$c_3 = \frac{\pi}{2}$,
$c_1 = -c_2 - c_3 = -\frac{\pi}{2}$.
So:
$$ I(t) = -\frac{\pi}{2} + \frac{\pi}{2} e^{-2t} + \pi t. $$
We wanted:
$$ \int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2(x^2 + 1)} \, dx = I(1), $$
so:
$$ \begin{aligned} I(1) &= -\frac{\pi}{2} + \frac{\pi}{2} e^{-2} + \pi \\ &= \frac{\pi}{2} ( -1 + e^{-2} + 2 ) \\ &= \frac{\pi}{2} (1 + e^{-2}). \end{aligned} $$
$$ \boxed{ \int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2(x^2 + 1)} \, dx = \frac{\pi}{2} (1 + e^{-2}) } $$