Let $C_{b}(\mathbb{R},\mathbb{R}):=\{f:\mathbb{R}→\mathbb{R} \,\,;f \style{font-family:inherit}{\text{ is continuous and }}||f||_{\infty}<\infty\}$. Let $\operatorname{Lip}(\mathbb{R}):=\{f:\mathbb{R}→\mathbb{R}\,\,: f \style{font-family:inherit}{\text{ is Lipschitz continuous}}\}$.
Problem: Show that $ \operatorname{Lip}(\mathbb{R})\cap C_{b}(\mathbb{R},\mathbb{R}) $ is not dense in $C_{b}(\mathbb{R},\mathbb{R})$ relative to metric $||\cdot||_{\infty}$.
Attempt. My idea is to choose a $\epsilon>0$ and a $f\in C_{b}(\mathbb{R},\mathbb{R})$ such that for all $g\in \operatorname{Lip}(\mathbb{R})\cap C_{b}(\mathbb{R},\mathbb{R})$, we have that $||f-g||_{\infty}\geq \epsilon$. But I can't think of how to start this.