2

Let $X_i \sim N(0,1)$ for $i = 1, \dots, n$ with $Cov(X_i, X_j) = \rho \in (0,1)$ for $i \ne j$.

For $k = 0, \dots, n-1$, let $r_k : \mathbb{R} \rightarrow \mathbb{R}$, be such that $$ r_k(t) = \frac{\Pr\{X_1 \leq t, \dots, X_{k+1} \leq t\}}{\Pr\{X_1 \leq t, \dots, X_{k} \leq t\}} $$

I want to show that $r_k$ is increasing (or find a counter example).

Here are is an observation that can be helpful:

  • Let $Y_{k} = \max_{i = 1, \dots, k} X_i$, then

$$ \Pr\{X_1 \leq t, \dots, X_{k} \leq t\} = \Pr\{ \max_{i = 1, \dots, k} X_i \leq t\} $$

It is well-know (see Steck 62: https://www.jstor.org/stable/2333977) that the CDF of $Y_{k}$ is given by $$ H_k(t; \rho) = \mathbb{E}_{X \sim N(0,1)} \left[ \Phi\left(\frac{t - \sqrt{\rho} X}{\sqrt{1 - \rho}}\right)^k \right] $$ where $\Phi$ is the CDF of a standard normal.

framago
  • 1,596

1 Answers1

1

$\DeclareMathOperator{\P}{\mathbb{P}}$ Thanks to the fact that $\rho>0$, the following holds \begin{align}p_k(t):&=\P(X_1\le t,\dots,X_k\le t)\\&=\int_{\mathbb{R}}\Phi\left(\frac{t - \sqrt{\rho} z}{\sqrt{1 - \rho}}\right)^k\phi(z)\,dz,\end{align} where $\Phi$ and $\phi$ are the CDF and the PDF of a $\mathop{N}(0,1)$ - distributed random variable, respectively. Since $\phi$ is symmetric around $0$, we get $$p_k(t)=\int_{\mathbb{R}}\Phi\left(\frac{t + \sqrt{\rho} z}{\sqrt{1 - \rho}}\right)^k\phi(z)\,dz.$$

For $x,y\in\mathbb{R}^d$ define the notations \begin{align} x\wedge y&\equiv\bigl(\min(x_1,y_1),\min(x_2,y_2),\dots,\min(x_d,y_d)\bigr),\\ x\vee y&\equiv\bigl(\max(x_1,y_1),\max(x_2,y_2),\dots,\max(x_d,y_d)\bigr). \end{align} Recall some definitions

  1. A function $f\colon \mathbb{R}^d\to[0,+\infty)$ is $\mathrm{MTP_2}$ (i.e multivariate totally positive of order 2) if $$f(x\wedge y)f(x\vee y)\ge f(x) f(y),\;\;\forall x,y\in \mathbb{R}^d.$$
  2. A function $f\colon \mathbb{R}^d\to[0,+\infty)$ is less than another function $g\colon \mathbb{R}^d\to[0,+\infty)$ in the $\mathrm{MTP_2}$ sense if $$f(x\wedge y)g(x\vee y)\ge f(x) g(y),\;\;\forall x,y\in \mathbb{R}^d,$$ and we will write $f\preceq g$.

In the unidimensional case $d=1$, we have $$f\preceq g\iff \frac{f(x)}{g(x)}\;\text{is non-decreasing},$$ and that is why the $\mathrm{MTP_2}$ ordering is also called the multivariate likelihood ratio ordering. Recall the following result

If $f(z)\preceq g(z)$ and $H(x,z)\preceq L(x,z)$, then \begin{equation}\int H(x,z)f(z)\,dz\preceq \int L(x,z)g(z)\,dz.\label{eq:0}\tag1.\end{equation}

Note that $r_k(t)$ is non-decreasing iff $p_{k+1}(t)\preceq p_k(t)$. We want to apply $\eqref{eq:0}$ with $f(z)=g(z)=\phi(z)$, and $H(t,z)=\Phi\left(\frac{t + \sqrt{\rho} z}{\sqrt{1 - \rho}}\right)^{k+1}$ and $L(t,z)=\Phi\left(\frac{t + \sqrt{\rho} z}{\sqrt{1 - \rho}}\right)^k$. Clearly, $f\preceq g$, because all functions of one variable are $\mathrm{MTP_2}$. To see why $H(t,z)\preceq L(t,z)$, note that $\Phi(\cdot)^{k+1}\preceq\Phi(\cdot)^{k}$ and use the fact that the transformation $(t,z)\mapsto\frac{t + \sqrt{\rho} z}{\sqrt{1 - \rho}}$ is coordinatewise increasing in both $t$ and $z$.

Karlin, Samuel; Rinott, Yosef, Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions, J. Multivariate Anal. 10, 467-498 (1980). ZBL0469.60006.

framago
  • 1,596