Let $m$ be the Lebesgue measure. $E \subset \mathbb R$ is a measurable set. If $\{ f_n \}$ converges to $f$ in measure on $E$ and $\{f_n\}$ in increasing sequence then $f_n$ converges to $f$ almost everywhere.
Since $\{ f_n \}$ converges to $f$ in measure then $\forall \epsilon >0$ and $\forall \delta >0$ there is a $N \in \mathbb N$ such that $$ m(\{ x \in E : |f_n (x) - f(x)| \ge \epsilon \} ) < \delta $$
I have to prove that there is a $A \subset E $ such that $m(A)=0$ and $\forall x \in E \backslash A, f_n(x) $ converges to $f(x)$.
Let $$ A_n := \{ x \in E : |f_n (x) - f(x)| \ge \epsilon \} $$ Then $ \forall n \ge N $, $m(A_n) < \delta $
Let $A:= \bigcap_{ n \in \mathbb N} A_n$ then $$ m(A) \le m(A_N) < \delta$$ Then $\forall \delta >0, m(A) < \delta \Rightarrow m(A)=0$.
Let $x \in E \backslash A \Rightarrow \exists n_0 \in \mathbb N $ such that $x \notin A_{n_0} \Rightarrow |f_{n_0} (x) - f(x)| < \epsilon $
Since $\{f_n\}$ is an increasing sequence then $\forall n \in \mathbb N, f_n \le f_{n+1} $
If I can prove that $\forall n \in \mathbb N, f_n \le f $ Then $ \forall n \in \mathbb N$; $$ |f_n (x) - f(x)| = f (x) - f_n(x) \ge f (x) - f_{n+1}(x) = |f_{n+1} (x) - f(x)|$$ Then $\forall n \in \mathbb N, A_{n+1} \subset A_n $
So $\forall n \ge n_0, x \notin A_n \Rightarrow \forall n \ge n_0,|f_{n_0} (x) - f(x)| < \epsilon $.
But I couldn't prove that $\forall n \in \mathbb N, f_n \le f $. Also I can't find a way to prove that without using this condition.
Any help?