Short Answer: $\boldsymbol{G \cong \mathrm{Aff}_+(1) \times Z_2}$, where $\boldsymbol{\mathrm{Aff}_+(1)}$ is the orientation-preserving affine group of $\boldsymbol{\mathbb{R}}$ and $\boldsymbol{Z_2 = \{
\pm 1 \}}$.
As in my comment, the classification of $2$-dimensional Lie groups says there are only two simply connected $2$-dimensional Lie groups, with one $\mathbb{R}^2$ and one yours (dropping the component $a < 0$). But the linked question (with its answer) do not give an intuitive understanding.
As we know, $\mathrm{Aff}(1)$ is a non-Abelian Lie group of dimension $2$, and it has $2$ components, just like yours. This is a strong evidence towards $\mathrm{Aff}(1)$ being isomorphic to yours.
But actually this is not the case. Let $G$ denote your group. We identify $\mathrm{Aff}(1)$ as
$$ \mathrm{Aff}(1) = \left\{ \begin{bmatrix} a & b \\ & 1 \end{bmatrix} :
a, b \in \mathbb{R} \text{, and } a \ne 0 \right\} \text{.} $$
Then their identity components are indeed isomorphic: Let
$$ \begin{aligned} G_+ &= \left\{ \begin{pmatrix} a & b \\ & a^{-1} \end{pmatrix} :
a, b \in \mathbb{R} \text{, and } a > 0 \right\} \text{, and} \\ \mathrm{Aff}_+(1) &= \left\{ \begin{bmatrix} a & b \\ & 1 \end{bmatrix} :
a, b \in \mathbb{R} \text{, and } a > 0 \right\} \text{.} \end{aligned} $$
Let’s give a isomorphism directly: The map $\varphi \colon G_+ \to \mathrm{Aff}_+(1)$ given by
$$ \begin{pmatrix} a & b \\ & a^{-1} \end{pmatrix} \mapsto \begin{bmatrix} a^2 & a b \\ & 1 \end{bmatrix} $$
is a group isomorphism: Its inverse is $\psi \colon \mathrm{Aff}_+(1) \to G_+$ given by
$$ \begin{bmatrix} a & b \\ & 1 \end{bmatrix} \mapsto \begin{pmatrix} a^{1/2} & a^{-1/2} b \\ & a^{-1/2} \end{pmatrix} \text{,} $$
and the multiplication is preserved:
$$
\begin{aligned}
\varphi \left( \begin{pmatrix} a & b \\ & a^{-1} \end{pmatrix} \begin{pmatrix} c & d \\ & c^{-1} \end{pmatrix} \right) &= \varphi \left( \begin{pmatrix} a c & a d + c^{-1} b \\ & a^{-1} c^{-1} \end{pmatrix} \right) \\
&= \begin{bmatrix} a^2 c^2 & a c (a d + c^{-1} b) \\ & 1 \end{bmatrix} \\
&= \begin{bmatrix} a^2 c^2 & a^2 c d + a b \\ & 1 \end{bmatrix} \\
&= \begin{bmatrix} a^2 & a b \\ & 1 \end{bmatrix} \begin{bmatrix} c^2 & c d \\ & 1 \end{bmatrix} \\
&= \varphi \left( \begin{pmatrix} a & b \\ & a^{-1} \end{pmatrix} \right) \varphi \left( \begin{pmatrix} c & d \\ & c^{-1} \end{pmatrix} \right) \text{.}
\end{aligned}
$$
Although $G_+ \cong \mathrm{Aff}_+(1)$, $G$ and $\mathrm{Aff}(1)$ are not isomorphic. To see this, let’s calculate their centers:
- For $G$, $(a, b) \cdot (c, d) = (a c, a d + c^{-1} b)$, solve
$$ \begin{aligned} a d + c^{-1} b &= c b + a^{-1} d \\ \iff a^2 c d + a b &= a c^2 b + c d \\ \iff (a^2 - 1) c d - a b c^2 + a b &= 0 \\ \iff a^2 - 1 = 0 \text{ and } a b &= 0 \\ \iff (a, b) &= (\pm 1, 0) \text{,} \end{aligned} $$
that is, $Z(G) = \{ I, -I \}$.
- For $\mathrm{Aff}(1)$, $(a, b) \cdot (c, d) = (a c, a d + b)$, solve
$$ \begin{aligned} a d + b &= c b + d \\ \iff (a - 1) d - b c + b &= 0 \\ \iff a - 1 = 0 \text{ and } b &= 0 \\ \iff (a, b) &= (1, 0) \text{,} \end{aligned} $$
that is, $Z(\mathrm{Aff}(1)) = \{ I \}$.
We conclude that $G \cong \mathrm{Aff}_+(1) \times Z_2$ while $\mathrm{Aff}(1) \cong \mathrm{Aff}_+(1) \rtimes Z_2$ with a different semidirect product.