The following problem was proposed online: $$\operatorname{P.V.}\int _0^1\frac{\ln ^2\left(x\right)}{1-2x}\:\mathrm{d}x=i\pi \ln ^2\left(2\right)+\operatorname{Li}_3\left(2\right)$$ $\displaystyle\operatorname{P.V.}\int _a^bf\left(x\right)\:\mathrm{d}x$ is the Cauchy principal value for that integral and $\operatorname{Li}_3\left(z\right)$ is the trilogarithm.
My attempt is the following: $$\operatorname{P.V.}\int _0^1\frac{\ln ^2\left(x\right)}{1-2x}\:\mathrm{d}x=\lim _{\epsilon \to 0^+}\left(\int _0^{\frac{1}{2}-\epsilon }\frac{\ln ^2\left(x\right)}{1-2x}\:\mathrm{d}x+\int _{\frac{1}{2}+\epsilon }^1\frac{\ln ^2\left(x\right)}{1-2x}\:\mathrm{d}x\right)$$ and $$\int \frac{\ln ^2\left(x\right)}{1-2x}\:\mathrm{d}x=-\frac{1}{2}\ln ^2\left(x\right)\ln \left(1-2x\right)-\ln \left(x\right)\operatorname{Li}_2\left(2x\right)+\operatorname{Li}_3\left(2x\right)+C$$ so $$\operatorname{P.V.}\int _0^1\frac{\ln ^2\left(x\right)}{1-2x}\:\mathrm{d}x$$ $$=\lim _{\epsilon \to 0^+}\left(-\frac{1}{2}\ln ^2\left(\frac{1}{2}-\epsilon \right)\ln \left(2\epsilon \right)-\ln \left(\frac{1}{2}-\epsilon \right)\operatorname{Li}_2\left(1-2\epsilon \right)+\operatorname{Li}_3\left(1-2\epsilon \right)+\operatorname{Li}_3\left(2\right)+\frac{1}{2}\ln ^2\left(\frac{1}{2}+\epsilon \right)\ln \left(-2\epsilon \right)+\ln \left(\frac{1}{2}+\epsilon \right)\operatorname{Li}_2\left(1+2\epsilon \right)-\operatorname{Li}_3\left(1+2\epsilon \right)\right)$$ $$=\frac{i\pi }{2}\ln ^2\left(2\right)+\operatorname{Li}_3\left(2\right)$$ According to the problem proposer this result is "wrong" as they have utilized software tools to verify it. I tried calculating the principal value with Mathematica as well and it gave me the same "wrong" answer.
Am I making a mistake? Is there something I am missing?
Thank you.
Edit. We have that $$\int _0^{\infty }\frac{\ln ^2\left(\frac{1+ix}{1+x^2}\right)}{x\left(1+x^2\right)}\:\mathrm{d}x=\int _0^1\frac{\ln ^2\left(x\right)}{1-x}\:\mathrm{d}x-\operatorname{P.V.}\int _0^1\frac{\ln ^2\left(x\right)}{1-2x}\:\mathrm{d}x$$ Numerically we have that $$\int _0^{\infty }\frac{\ln ^2\left(\frac{1+ix}{1+x^2}\right)}{x\left(1+x^2\right)}\:\mathrm{d}x\approx-0.357958-0.754694 i$$ Using the (wrong) result I obtained would yield $$\int _0^{\infty }\frac{\ln ^2\left(\frac{1+ix}{1+x^2}\right)}{x\left(1+x^2\right)}\:\mathrm{d}x=2\zeta \left(3\right)-\frac{i\pi }{2}\ln ^2\left(2\right)-\operatorname{Li}_3\left(2\right)$$ $$\approx-0.357958$$ If instead, the proposed result is used $$\int _0^{\infty }\frac{\ln ^2\left(\frac{1+ix}{1+x^2}\right)}{x\left(1+x^2\right)}\:\mathrm{d}x=2\zeta \left(3\right)-i\pi \ln ^2\left(2\right)-\operatorname{Li}_3\left(2\right)$$ $$\approx-0.357958-0.754694 i$$ Conclusion. This edit suggests that the integral in question is supposed to yield a complex number, not a real one.
