Suppose that $X_1,\ldots,X_n$ are independent sub-Gaussian random variables with $ \max_{1\leq i \leq n} \Vert X_i \Vert_{\psi_2} \leq 1$. I need to prove that:
$$P \left( \max_{1\leq i \leq n} X_i \geq t \sqrt{\log n} \right) \leq 2 \exp (-Ct^2)$$
Approach:
Since $ X_i $ are sub-Gaussian random variables with $ \Vert X_i \Vert_{\psi_2} \leq 1 $, each $ X_i $ satisfies the tail bound: $$ P(|X_i| \geq u) \leq 2 \exp(-cu^2) $$ for some constant $ c > 0 $ and any $ u > 0 $.
We are interested in bounding the probability $ P\left( \max_{1 \leq i \leq n} X_i \geq t \sqrt{\log n} \right) $.
By the union bound: $$ P\left( \max_{1 \leq i \leq n} X_i \geq t \sqrt{\log n} \right) \leq \sum_{i=1}^n P\left(X_i \geq t \sqrt{\log n} \right). $$
For each $ i $, using the sub-Gaussian tail bound with $ u = t \sqrt{\log n} $, we get: $$ P\left(X_i \geq t \sqrt{\log n} \right) \leq \exp(-c t^2 \log n) = n^{-c t^2}. $$
Summing these probabilities, we obtain: $$ P\left( \max_{1 \leq i \leq n} X_i \geq t \sqrt{\log n} \right) \leq n \cdot n^{-c t^2} = n^{1 - c t^2}. $$ For this probability to be small, we need $ 1 - c t^2 \leq -1 $, or $ c t^2 \geq 2 $.
Therefore, choosing $ t $ large enough (e.g., $ t \geq \sqrt{2/c} $), we have: $$ P\left( \max_{1 \leq i \leq n} X_i \geq t \sqrt{\log n} \right) \leq 2 \exp(-Ct^2), $$ where $ C = c / 2 $ is a universal constant.
Where am I going wrong with this? Can anyone help me out here? Thanks!