I am reading materials on PageRank seen here: https://arxiv.org/pdf/2207.02296, and here: https://www.stat.uchicago.edu/~lekheng/meetings/mathofranking/ref/langville.pdf. Given the walk matrix $\mathbf{M}$ depicting a Markov chain, some $0 < \alpha < 1$, and $n\times1$ probability vector $\mathbf{p}$, we can write the stationary distribution with: \begin{align*} \mathbf{p}^T = \mathbf{p} \biggl(\alpha\mathbf{M} + (1-\alpha)\frac{\mathbf{e}\mathbf{e}^T}{n}\biggr). \end{align*} where $\mathbf{e}$ is the all ones vector. We know the second eigenvalue $\lambda_2$ of this weighted sum walk matrix $\alpha\mathbf{M} + (1-\alpha)\frac{\mathbf{e}\mathbf{e}^T}{n}$ is the mixing time.
Now I want to determine the change in $\lambda_2$ as a function of change in $\alpha$. That is to say given perturbed $\alpha$: $0 < \alpha + \Delta \alpha <1$, then what is the $\lambda_2$ of this system: \begin{align*} \mathbf{p}^T = \mathbf{p} \biggl((\alpha + \Delta \alpha) \mathbf{M} + (1-\alpha - \Delta \alpha)\frac{\mathbf{e}\mathbf{e}^T}{n}\biggr). \end{align*}
I saw a similar post here: Given a perturbation of a symmetric matrix, find an expansion for the eigenvalues, but it's unclear if it answers my question.