This won't be quite what you want, but it's not too hard to get a power series of the form
$$G(t;x)=\sum_{n=0}^\infty H_{4n}(x)\frac{t^{4n}}{(4n)!}$$
using a root of unity filter. In this case, writing $$F(t;x)=\sum_{n=0}^\infty H_n(x)\frac{t^n}{n!} = e^{2xt-t^2}$$
we have
\begin{align}
G(t;x)
&:=\frac14\Big[F(t;x)+F(it;x)+F(-t;x)+F(-it;x)\Big]\\
&=\sum_{n=0}^\infty \frac{1}{4}\left[t^n+(it)^n+(-t)^n+(-it)^n\right]H_n(x)\frac{1}{n!}\\
&=\sum_{n=0}^\infty \frac{1}{4}\left[1+i^n+(-1)^n+(-i)^n\right]H_n(x)\frac{t^n}{n!}
\end{align}
The term in brackets sums to zero unless $n$ is a multiple of 4. Hence
$$G(t;x)=\sum_{n=0}^\infty H_{4n}(x)\frac{t^{4n}}{(4n)!}$$
Additionally, note that we may group terms to obtain the simpler form
\begin{align}
G(t;x)
&=\frac14 [F(t;x)+F(-t;x)]+\frac14[F(it;x)+\frac14 F(-it;x)]\\
&=\frac14[e^{2xt-t^2}+e^{-2xt-t^2}]+\frac14[e^{2ixt+t^2}+e^{-2ixt+t^2}]\\
&=\frac12 e^{-t^2}\cosh(2xt)+\frac12 e^{t^2}\cos(2x t)
\end{align}
A lingering issue is that this is a series in powers $t^4$, not $t$. But this is remedied by replacing $t\to t^{1/4}$:
$$G(t^{1/4};x)=\sum_{n=0}^\infty H_{4n}(x)\frac{t^{n}}{(4n)!}=\frac12 e^{-t^{1/2}}\cosh(2xt^{1/4})+\frac12 e^{t^{1/2}}\cos(2x t^{1/4})$$