I learned the following convention.
Convention 1:
Let $P,Q$ be statements.
If $P$ is a false statement, then $P\implies Q$ is true.
Convention 1 works perfectly anytime.
Why?
For example,
Proposition 1:
Suppose $n\in\mathbb{N}$.
Then for any $x\in n$, $x\in\mathbb{N}$.
Proof:
If $n=0$, then by Convention 1, for any $x\in 0,x\in\mathbb{N}$.
Suppose $n\in\mathbb{N}$ and for any $x\in n$, $x\in\mathbb{N}$.
Let $x$ be any element of $n\cup\{n\}$.
If $x\in n$, then $x\in\mathbb{N}$ by induction hypothesis.
If $x=n$, then $x=n\in\mathbb{N}$.So, by induction, if $n\in\mathbb{N}$, then for any $x\in n$, $x\in\mathbb{N}$.
I think the above proof is the standard proof but I would like to prove Proposition 1 as follows and tend to prove Propostion 1 as follows:
Proof:
If $n=0$, then by Convention 1, for any $x\in 0,x\in\mathbb{N}$.
Suppose $n\in\mathbb{N}$ and for any $x\in n$, $x\in\mathbb{N}$.
Let $x$ be any element of $n\cup\{n\}$.
If $n=0$, then $x=n$ since $x\notin n$.
And $x=n\in\mathbb{N}$.
Suppose $n\neq 0$.
Let $x$ be any element of $n\cup\{n\}$.
If $x\in n$, then $x\in\mathbb{N}$ by induction hypothesis.
If $x=n$, then $x=n\in\mathbb{N}$.So, by induction, if $n\in\mathbb{N}$, then for any $x\in n$, $x\in\mathbb{N}$.
Convention 1 works perfectly anytime.
Why?
