So I've had a few attempts at this this integral, but they all seem to get different answers to wolframalpha. This is my working out:
$I=\int \ln(\sin(x))dx \\ I=\int \ln(\frac{e^{ix}-e^{-ix}}{2i})dx \\ I=\int \ln(e^{ix}-e^{-ix})-\ln(2i)dx \\ I = \int \ln(e^{ix}-e^{-ix})dx-\ln(2i)x$
I split this up so to make things a bit clearer.
$I_{0}=\int\ln(e^{ix}-e^{-ix})dx \\ I_{0}=\int \ln(e^{ix}(1-e^{-2ix}))dx \\ I_0=\int \ln(e^{ix})+\ln(1-e^{-2ix})dx \\ I_{0}=\int \ln(1-e^{-2ix})dx + \frac{ix^{2}}{2}$
It is mainly this part which I think I have done incorrectly.
$I_{1}=\int \ln(1-e^{-2ix})dx \\ I_{1}=\int \ln(1-e^{-2ix})dx \\ \text{Let }e^{-2ix}=u \Leftrightarrow \frac{-2ix}{u}du=dx \\ I_{1} = -2i\int \frac{\ln(1-u)}{u}du \\ I_{1} = 2i\int \sum^{\infty}_{n=1}\frac{u^{n-1}}{n}du \\ I_{1} = 2i \sum^{\infty}_{n=1}\frac{u^{n}}{n^{2}} \\ I_{1}=2i\text{Li}_{2}(u) \\ I_1=2i\text{Li}_{2}(e^{-2ix})$
After substituting everything back into the original integral I got:
$I=2i\text{Li}_{2}(e^{-2ix})-\ln(2i)x+\frac{ix^{2}}{2}+C$