I have a question about an inequality I am trying to integrate. $$\int_0^1 (1 - x^a)^b ~dx \ge \left(1-\frac{1}{a+1}\right)\frac{1}{b^{\frac{1}{a}}},$$ where $a, b \ge 1$ are integers.
Any assistance with this problem would be appreciated.
My attempt: $$\int_0^1 (1-x^{a})^b dx= \frac{1}{a}\int_0^1 (1-t)^bt^{\frac{1}{a}-1}dt$$$$ =\frac{1}{a}B\left(\frac{1}{a},b+1\right)dt$$$$ =\frac{1}{a}\frac{\Gamma\left(\frac{1}{a}\right)\Gamma(b+1)}{\Gamma\left(\frac{1}{a}+b+1\right)}$$$$ \ge \left(1-\frac{1}{a+1}\right) \frac{1-\epsilon}{d^{\frac{1}{a}}},\text{ works only when $b$ is large enough}.$$
Here I use the facts that $\frac{1}{a}\Gamma\left(\frac{1}{a}\right)\ge 1-\frac{1}{a+1}$ and $$\lim_{b\rightarrow \infty}\frac{\Gamma(b+1)}{\Gamma(b+1+\frac{1}{a})b^{\frac{1}{a}}}=1$$
Could someone prove the inequality for grneral integers $a,b$?