For example, if I have $f(x)= \begin{cases} x & \text{if } x\neq0, \\ 0 & \text{if } x = 0. \end{cases}$ and I take the derivative: $f'(x)= \begin{cases} 1 & \text{if } x\neq0, \\ 0 & \text{if } x = 0. \end{cases}$ then is the derivative of $f$ at $0$ equal to $0$ or $1$? Since evidently, the function is a continuous straight line, but according to the piecewise function, the derivative at $x=0$ is $0$.
Similarly, if I have $f(x)= \begin{cases} |x| & \text{if } x\neq0, \\ 0 & \text{if } x = 0. \end{cases}$, with derivative $f(x)= \begin{cases} \frac{x}{|x|} & \text{if } x\neq0, \\ 0 & \text{if } x = 0. \end{cases}$ then would the derivative at $x=0$ be $0$ or DNE?
Or another case with $f(x) = \begin{cases} x^2 \sin(1/x) &\mbox{if } x\neq 0 \\ 0 & \mbox{if } x=0. \end{cases}$. Does the derivative in this case at $x=0$ equal $0$ or DNE?