$$ \frac{A_{n+1}}{\left(\frac{3}{2}\right)^{n+1}} = \frac{A_{n}}{\left(\frac{3}{2}\right)^{n}} + (1 - \frac{n}{2}) \left(\frac{2}{3}\right)^{n+1} $$
So you can add this equation from 1 to n.
Generally speaking, for recurrence equation $ a_{n+1} = p a_{n} + f(n) $, we let $ b_{n} = \frac{a_{n}}{p^n} $, so that $ b_{n+1} = b_{n} + \frac{f(n)}{p^{n+1}} $.
$$
\begin{aligned}
b_{n} - b_{n-1} & = \frac{f(n-1)}{p^{n}} \\
b_{n-1} - b_{n-2} & = \frac{f(n-2)}{p^{n-1}} \\
&... \\
b_{k} - b_{k-1} & = \frac{f(k-1)}{p^{k}}\\
& ... \\
b_{2} - b_{1} & = \frac{f(1)}{p^{2}}
\end{aligned}
$$
So we get $ b_{n} = b_{1} + \sum_{k=1}^{n-1} \frac{f(k)}{p^{k+1}} $