Using Ali Shadhar's comment,
$$\color{blue}{\psi_1(n)=\zeta(2)-H^{(2)}_{n-1}}$$
$$S=\sum_{n=1}^{\infty}\frac{\psi_1(n)}{2^nn^2}$$
$$S=\sum_{n=1}^{\infty}\frac{\zeta(2)-H^{(2)}_{n-1}}{2^nn^2}=\zeta(2)\sum_{n=1}^{\infty}\frac{1}{2^n n^2}-\sum_{n=1}^{\infty}\frac{H^{(2)}_{n-1}}{2^n n^2}$$
$$S=\zeta(2)S_1-S_2$$
Now, Using the definition of Dilogarithm,
$$\operatorname{Li}_2(z)=\sum_{n=1}^\infty\frac{z^n}{n^2} \underset{z=\frac12}\implies \operatorname{Li}_2\left(\frac12\right)=\sum_{n=1}^\infty\frac{1}{2^nn^2}$$
$$\boxed{S_1=\sum_{n=1}^{\infty}\frac{1}{2^n n^2}=\operatorname{Li}_2\left(\frac12\right)=\frac{1}{2}(\zeta(2)-\log^2(2))}$$
$$\boxed{S_2=\sum\limits_{n=1}^{\infty} \frac{H_{n-1}^{(2)}}{2^nn^2}=\frac1{16}\zeta(4)+\frac14\log(2)\zeta(3)-\frac14\log^2(2)\zeta(2)+\frac1{24}\log^4(2)}$$
$$S=\zeta(2)\left(\frac{1}{2}(\zeta(2)-\log^2(2))\right)-\left(\frac1{16}\zeta(4)+\frac14\log(2)\zeta(3)-\frac14\log^2(2)\zeta(2)+\frac1{24}\log^4(2)\right)$$
$$\boxed{\color{red}{S=\frac{1}{2}\zeta^2(2)-\frac{1}{4}\zeta(2)\log^2(2)-\frac1{16}\zeta(4)-\frac14\log(2)\zeta(3)-\frac1{24}\log^4(2)\approx 0.869761203}}$$
Which agrees with this
Luckily, there are answers that can explain the second summation better than I possibly can.
Similarly, one can also prove $\sum_{n=1}^{\infty}\frac{\psi_1(n)}{2^nn^2}=\frac{1}{4}\zeta(3)+\frac{1}{6}\log^3(2)+\frac{1}{2}\zeta(2)\log(2)$