Let $B$ be a finitely generated integral $\mathbb{C}$-domain. Let $\partial:B\to B$ be a LND, locally nilpotent derivation, i.e. a $\mathbb{C}$-linear map satisfying
- Leibniz rule: $\partial(fg)=f\partial(g)+\partial(f)g$ for $f,g\in B$;
- locally nilpotent: for all $f\in B$, there exists $n\in\mathbb{N}_+$ such that $\partial^n(f):=\partial\circ\cdots\circ \partial (f)=0$.
An $\mathbb{N}$-grading on $B$ is a decomposition into subspaces $$B=\bigoplus_{m\in\mathbb{N}}B_d$$ such that $B_{m_1}\cdot B_{m_2}\subseteq B_{m_1+m_2}$. We say this $\mathbb{N}$-grading grades $\partial$ with weight $d\in\mathbb{N}_+$ if $$\partial (B_m)\subseteq B_{m-d},\quad \forall m\in\mathbb{N}$$ where $B_{-1}=B_{-2}=\cdots=0$. In particular $B_0,\cdots,B_{d-1}\subseteq\ker(\partial)$. We say an $\mathbb{N}$-grading is $\partial$-compatible if for some $d\in\mathbb{N}_+$ the $\mathbb{N}$-grading grades $\partial$ with weight $d$.
My question is the following.
- Given $\partial:B\to B$ as above, does there always exist a $\partial$-compatible $\mathbb{N}$-grading?