$\ \forall$ $x_1,x_2,...,x_n$ $\in \mathbb{R}$ $(x_i\not=x_j)$ in the range of $[-1,1]$ prove : $$\sum_{i=1}^{n}\frac{1}{\Pi_{k\not=i}|x_k-x_i|}\ge2^{n-2}$$
my attempt :
$$p(x) = \sum_{i=1}^{n}\left(p(x_i)\prod_{k\not=i}\frac{x-x_k}{x_i-x_k}\right)$$
by triangle inequality :
$$\left|p(x)\right| \leq \sum_{i=1}^{n}\left|p(x_i)\right|\prod_{k\not=i}\bigg|\frac{x-x_k}{x_i-x_k}\bigg|$$
now if $p(x) = \sum_{i=0}^{n-1}a_ix^i$ then :
$$\left|\frac{p(x)}{x^{n-1}}\right|\leq\sum_{k=1}^{n}\frac{\left|p(x_k)\right|}{\prod_{k\not=j}\left|x_k-x_j\right|}\Bigg|\prod_{k\not=j}(1-\frac{x_i}{x})\Bigg|$$
then if we $x\to\infty$ we get :
$$\left|a_{n-1}\right|\leq\sum_{k=1}^{n}\frac{\left|p(x_k)\right|}{\prod_{k\not=i}\left|x_k-x_i\right|}$$