Define $a_n=n\sin(n!\pi e)$. First, we do the Taylor series for $e$
$$e=1+1+\frac{1}2+\dots+\frac{1}{(n-2)!}+\frac{1}{(n-1)!}+\frac{1}{n!}+\frac{1}{(n+1)!}+\frac{e^c}{(n+2)!},~~~c\in (0,1)$$
we get
$$n!e=\underbrace{n!+n!+(3\cdot4\cdots n)+\cdots+(n-1)n}_{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=2m~\text{is an even integer}}+n+1+\frac{1}{n+1}+\frac{e^c}{(n+1)(n+2)}$$
Therefore,
$$\sin(n!\pi e)=\sin\left(2m\pi+ (n+1)\pi+\frac{\pi}{n+1}+\frac{e^c\pi}{(n+1)(n+2)}\right)$$
and
$$a_n=n\sin\left((n+1)\pi+\frac{\pi}{n+1}+\frac{e^c\pi}{(n+1)(n+2)}\right)$$
We compute the limit for subsequences $a_{2k}$ and $a_{2k-1}$:
$$\begin{align}\lim_{k\to\infty} a_{2k}&=-(2k)\sin\left(\frac{\pi}{2k+1}+\frac{e^c\pi}{(2k+1)(2k+2)}\right)=-\pi\\
\\
\lim_{k\to\infty} a_{2k-1}&=(2k-1)\sin\left(\frac{\pi}{2k}+\frac{e^c\pi}{(2k)(2k+1)}\right)=\pi\end{align}$$
So the limit does NOT exist.
Remarks:
For that old post, it is to evaluate $\lim n\sin(n!2\pi e)$, this is convergent, because after you do the same series expansion, you multiply $2\pi$ to the integer part, you get
$$\begin{align}\sin(n!2\pi e)&=\sin\left(4m\pi+ 2(n+1)\pi+\frac{2\pi}{n+1}+\frac{2e^c\pi}{(n+1)(n+2)}\right)\\
\\
&=\sin\left(\frac{2\pi}{n+1}+\frac{2e^c\pi}{(n+1)(n+2)}\right)\end{align}$$
so it won't split into two subsequences with $\pm$ sign issues.