I seek an equational axiomatization of the quantifiers of predicate logic (that permits empty domains).
Start with the equational axioms for Boolean algebra. Add the following axioms, which come in dual pairs:
Renaming (for $y$ not free in $a$): \begin{align} \forall x a &= \forall y a[x / y] \\ \exists x a &= \exists y a[x / y] \end{align}
Exchange: \begin{align} \forall x \forall y a &= \forall y \forall x a \\ \exists x \exists y a &= \exists y \exists x a \end{align}
Distributivity: \begin{align} \forall x (a \land b) &= \forall x a \land \forall x b \\ \exists x (a \lor b) &= \exists x a \lor \exists x b \end{align}
Empty distributivity: \begin{align} \forall x \top &= \top \\ \exists x \bot &= \bot \end{align}
However, there are some tautologies I can't derive, such as
\begin{align} \exists x a &\leq a & \text{$x$ not free in $a$} \\ a &\leq \forall x a & \text{$x$ not free in $a$} \end{align}
\begin{align} \exists x (a \land b) &\leq \exists x a \\ \forall x a &\leq \forall x (a \lor b) \end{align}
\begin{align} \forall x a \land \exists x b &\leq \exists x (a \land b) \\ \forall x (a \lor b) &\leq \exists x a \lor \forall x b \end{align}
where $a \leq b$ means $a \land b = a$ or $a \lor b = b$. What is the simplest way to complete or modify this equational axiomatization so that all tautologies (in the language generated by $\{\land, \lor, \top, \bot, \forall, \exists\}$) are derivable?
Some of the rules of passage fail on empty domains. For example, $Qx(\beta \land \alpha) \leftrightarrow \beta \land Qx \alpha$ (for $x$ not free in $\beta$) fails on the empty domain when $Q = \forall$ and $\beta = \bot$.