I know how to show that when $f$ is proper and $\mu$-strongly convex, its subgradient $\partial f$ is $\mu$-strongly monotone. Is the converse true?
Let $H$ be a real Hilbert space and $f : H \longrightarrow \overline{\mathbb R}$ proper. I claim that the following are equivalent:
$f$ is $\mu$-strongly convex, that is $$ f[(1-t)x+ty] \leq (1-t)f(x) + tf(y) - \frac{t(1-t)}{2}\mu |x-y|^2 $$
$ f(y) \geq f(x) + (x^* , y-x) + \frac{\mu}{2} |x-y|^2,\quad \forall x,y \in H,\quad \forall x^* \in \partial f(x)$
$\partial f$ is $\mu$-strongly monotone, that is $$ (x^*-y^* , x-y) \geq \mu |x-y|^2,\quad \forall x,y \in H,\quad \forall x^* \in \partial f(x),\quad \forall y^* \in \partial f(y). $$
Proof of $1 \Longrightarrow 2$ : Suppose that $f$ is $\mu$ strongly convex, let $x,y \in H$, $x^* \in \partial f(x)$ and $0 < t < 1$. Apply the inequality to $x + t(y-x)$ in place of $y$: $$ f(x) + (x^* , t(y-x)) \leq f(x + t(y-x)) \leq (1-t)f(x) + tf(y) - \frac{t(1-t)}{2}\mu |x-y|^2. $$ Simplifying by $f(x)$, dividing by $t>0$ and letting $t$ going to $0$ we get 2.$\square$
Proof of $2 \Longrightarrow 3$ : Suppose that $f$ satisfy the estimate 2, let $x,y \in H$, $x^* \in \partial f(x)$ and $y^* \in \partial f(y)$. We have $$ f(y) \geq f(x) + (x^* , y-x) + \frac{\mu}{2}|x-y|^2,\quad f(x) \geq f(y) + (y^* , x-y) + \frac{\mu}{2}|x-y|^2 $$ so summing up we get $\partial f$ to be $\mu$ strongly monotone.$\square$
Now I experience some troubles to show that 3 implies 1 even in the $C^1$ case. Any help would be appreciated.
$$f(x) \geq f(y) + \langle u, x-y\rangle$$
Now add and subtract a subgradient of $f$ at $y$ in the inner product and use the strong monotonicity: $$f(x)\geq f(y) + \langle u, x-y\rangle\ =f(y) + \langle u-v+v, x-y\rangle\ =f(y) + \langle u-v, x-y\rangle + \langle v, x-y\rangle\ \geq f(y) + \mu|x-y|^2 + \langle v, x-y\rangle $$
Which gives
$$f(y)\leq f(x) + \langle v,x-y\rangle +\mu|x-y|^2$$
i.e., 3 implies 2
– Jürgen Sukumaran Nov 22 '22 at 13:35