Let $d\in\mathbb N$ and $X$ be an $\mathbb R^d$-valued random variable on a probability space $(\Omega,\mathcal A,\operatorname P)$. Let $$F(x):=\operatorname P\left[X\le x\right]\;\;\;\text{for }x\in\mathbb R^d,$$ $$F_1(x_1):=\operatorname P\left[X_1\le x_1\right]\;\;\;\text{for }x\in\mathbb R$$ and $$F_i(x):=\operatorname P\left[X_i\le x_i\mid X_1\le x_1,\ldots,X_{i-1}\le x_{i-1}\right]\;\;\;\text{for }x\in\mathbb R^i.$$ Now let $U$ be an $\mathbb R^d$-valued random variable on $(\Omega,\mathcal A,\operatorname P)$ with $U\sim\mathcal U_{[0,\:1)^d}$ (uniform distribution on $[0,1)^d$ and $$Y_1:=F_1^{-1}(U_1)$$ $$Y_i:=F_i^{-1}(Y_1,\ldots,Y_{i-1},U_i)$$ for $i\in{2,\ldots,d}.$$
How can we show that $X\sim Y$.
I'm only able to show this when $d=1$ (see below$^1$).
$^1$ Remember that $F:\mathbb R\to[0,1]$ is called distribution function if
- $F$ is nondecreasing;
- $F$ is right-continuous;
- $F(x)\xrightarrow{x\to-\infty}0$;
- $F(x)\xrightarrow{x\to\infty}1$.
Let $$F^{-1}(u):=\inf\{x\in\mathbb R:F(x)\ge u\}\;\;\;\text{for }u\in(0,1).$$ We can easily show that $$F^{-1}(u)\le x\Leftrightarrow u\le F(x)\;\;\;\text{for all }x\in\mathbb R\text{ and }u\in(0,1)\tag1$$ and hence $$\{u\in(0,1):F^{-1}(u)\le x\}=(0,F(x)]\cap(0,1)\;\;\;\text{for all }x\in\mathbb R.\tag2.$$ Using this we are immediately able to conclude that $$X:=F^{-1}$$ is a random variable on $((0,1),\mathcal B((0,1)),\mathcal U_{(0,\:1)})$, where $\mathcal U_{(0,\:1)}$ denotes the uniform distribution on $(0,1)$, with $$\operatorname P\left[X\le x\right]=F(x)\;\;\;\text{for all }x\in\mathbb R\tag3,$$ which is to say that $F$ is the distribution function of $X$.