$\DeclareMathOperator\cis{cis}$ I define $e^x$ to be $$\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n,$$ so $$e^{i\theta} = \lim_{n\to\infty} \left( 1+\frac{i\theta}{n} \right)^n.$$
Now I express $1+\dfrac{i\theta}{n}$ in polar form. The magnitude will be $$\sqrt{1^2+ \left( \frac{\theta}{n} \right)^2} = \sqrt{1+ \frac{\theta^2}{n^2} },$$ the argument will be $$\tan^{-1} \left( \dfrac{\theta/n}{1} \right) = \tan^{-1} \left( \dfrac{\theta}{n} \right).$$ So $$e^{i\theta} = \lim_{n\to\infty} \left( \sqrt{1+ \frac{\theta^2}{n^2} } \left( \cis \left( \tan^{-1} \left( \frac{\theta}{n} \right) \right) \right) \right)^n.$$ By De Moivre’s theorem we get \begin{align} e^{i\theta} &= \lim_{n\to\infty} \left( \left( \sqrt{1+ \frac{\theta^2}{n^2} } \right)^n \left( \cis \left( n\tan^{-1} \left( \frac{\theta}{n} \right) \right) \right) \right) \\ &= \left( \lim_{n\to\infty} \left( \sqrt{1+ \frac{\theta^2}{n^2} } \right)^n \right) \cis \left( \lim_{n\to\infty} \left(n\tan^{-1} \left( \frac{\theta}{n} \right) \right) \right). \end{align} Using L’Hopital’s rule you can find $$\lim_{n\to\infty} \left( \sqrt{1+ \frac{\theta^2}{n^2} } \right)^n = 1$$ and $$\lim_{n\to\infty} \left(n\tan^{-1} \left( \frac{\theta}{n} \right) \right) = \theta,$$ so \begin{align} e^{i\theta} &= 1 \cdot \cis(\theta) \\ &= \cos\theta+i\sin\theta, \end{align} which is Euler’s identity. However, I am now questioning whether this is valid or not, as I can not find similar proofs online. This proof is the easiest to understand for me, so considering I can’t find much like it, it is probably wrong.
Any help would be appreciated.