By Chow's lemma, I mean any variant of the following basic result in algebraic geometry relating complete varieties to projective varieties:
Lemma. For any complete variety $X$, there exist a projective variety $\tilde{X}$ and a surjective birational map $\tilde{X} \to X$.
For example, Stacks gives this generalisation:
Lemma. For any noetherian scheme $S$ and any separated $S$-scheme $X$ of finite type, there exist an $S$-scheme $\tilde{X}$ and a surjective proper morphism $\pi : \tilde{X} \to X$ such that $\tilde{X}$ admits an immersion into $\mathbb{P}^n_S$ (for some $n$) and there is a dense open $U \subseteq X$ such that $\pi : \pi^{-1} U \to U$ is an isomorphism.
I am interested in the history of this result.
Question. What is the original version of Chow's lemma, when and where was it proved/published, and what was it used for?
In Weil's Foundations of algebraic geometry, the very definition of completeness seems to build in the core of the proof of Chow's lemma. The resemblance is enough to make me wonder whether Chow's lemma came first and Weil turned it upside-down to get the definition of completeness. Unfortunately I was not able to trace the result further back than EGA II, and I did not find anything resembling it in Chow's famous paper On compact complex analytic varieties either, so I am a bit at a loss.