Given $X,Y \sim \mathcal{N}(0,1)$ and $Z=\sqrt{X^2 + Y^2}$, find the PDF of $Z$.
I know from digging around that this will follow a Rayleigh distribution since the sum of two squared normally distributed variables follow an exponential distribution and the root of an exponentially distributed variable follows something called a Rayleigh distribution. Wikipedia confirms this can be thought of as the root of the sum of two normally distributed variables with variance $\sigma$ $$ \begin{split} Z &\sim \mathcal{R}(1) \\ f_Z(z) &= ze^{-z^2/2} \end{split} $$
That said I really have no idea where to begin. My normal approach to is to think of things in terms of the CDF, i.e. $$ \mathbb{P}[Z < z] = \mathbb{P}\left[\sqrt{X^2+Y^2}<\sqrt{x^2+y^2}\right] $$ And then find an expression of the CDF that is easy to work with.