1

I am new to the Riemann/Siegel Theta function, but it represents many special cases of Inverse Beta Regularized $\text I^{-1}_s(a,b)$. The Riemann theta function can represent any Abelian function, the inverse of any Abelian integral, with the following series expansion. If

$$y=\int_0^x\frac{dt}{\sqrt{\sum\limits_{k=0}^d a_kt^k}}$$ then, its inverse function is a ratio of homogenous polynomials of $$\Theta(\Omega;s)=\Theta\left(\left(\begin{matrix}m_{1,1}&…&m_{1,r}\\\vdots&\ddots&\vdots\\m_{r,1}&…&m_{r,r}\end{matrix}\right);s_1,…,s_r\right)=\sum_{n\in\Bbb Z^r}e^{i\pi(\Omega n^2+2ns)}$$ where $\sum\limits_{n\in\Bbb Z^r}=\sum\limits_{n_1=-\infty}^\infty\cdots\sum\limits_{n_r=-\infty}^\infty$, $a_n$ is a polynomial coefficient, and the dot product is assumed. The inverse beta regularized function is defined by:

$$\text B(a,b)y=\int_0^x t^{a-1} (1-t)^{b-1} dt\implies x=\text I^{-1}_y(a,b);a,b>0,0\le y\le 1$$

Particularly with the Incomplete Beta function $\text B_z(a,b)$:

$$y=\int_0^x\frac1{\sqrt{\left(ax^n+x^m\right)^c}}dx=\frac{\left(-\frac1a\right)^\frac{cn-2}{2(m-n)}}{a^\frac c2(m-n)}\text B_{-\frac{x^{m-n}}a}\left(\frac{cn-2}{2(n-m)},1-\frac c2\right)\implies x=\sqrt[m-n]{-a\operatorname I^{-1}_\frac{a^\frac c2(m-n)y}{\left(-\frac1a\right)^\frac{cn-2}{2(m-n)}\text B\left(\frac{cn-2}{2(n-m)},1-\frac c2\right)} \left(\frac{cn-2}{2(n-m)},1-\frac c2\right)}$$

with $0\le \frac{a^\frac c2(m-n)y}{\left(-\frac1a\right)^\frac{cn-2}{2(m-n)}\text B\left(\frac{cn-2}{2(n-m)},1-\frac c2\right)}\le1,\frac{cn-2}{2(n-m)}>0,c<2$ becoming an Abelian function if $m,n\in\Bbb N,c=0,1,c\to2$

However, there should be more cases where inverse beta regularized is an Abelian function. Note that the Riemann theta function is in Mathematica as SiegelTheta and as RiemannTheta in Maple. Hopefully, we can now extend the $\text I^{-1}_x(a,b)$ function’s domain since $\Theta(\Omega;s)$ can have complex arguments.

What is inverse beta regularized in terms of Riemann theta?

Тyma Gaidash
  • 13,576
  • Any progress on this? I've just looked up Riemann-Siegel theta and it belongs to so-called "differentiated Gamma functions. Particularly, one can express it in terms of polygamma, or as an evaluation of an elementary function of umbral argument. I expected that Inverse Beta Regularized should have an expression an an evaluated elementary function in umbral calculus. – Anixx Feb 14 '25 at 21:48
  • More specifically, $\theta(t)=\text{eval}\left(\frac{1}{8} ((-4 i B+2 t-i) \ln (4 B+2 i t+1)+(4 i B+2 t+i) \ln (4 B-2 i t+1)-4 t (1+\ln (4\pi)))\right)$ – Anixx Feb 14 '25 at 21:57
  • Oh but it seems to be another function... – Anixx Feb 14 '25 at 22:10

0 Answers0