In fact, we need to find coefficient of $x^{10}$ in $(1+x+x^2+\cdots+x^5)^{10}$.
Easy way/trick to check this coefficient $-$ to set
$$x=10^m, $$
where $m$ is rather big. Then to calculate given expression (using Mathematica or something else).
For example: $x=1\,\,000\,000$,
$$
\begin{array}{l}
(x^5+x^4+\cdots+x+1)^{10} = 1\;\; 000\,001\;\; 000\,001\;\; 000\,001\;\; 000\,001\;\; 000\,001^{10} = \\
\ldots \;\;\ldots \;\;\ldots \;\ldots
\;\;243\,925\;\;147\,940\;\;\color{red}{085\,228}\;\; \\
046\,420\;\;023\,760\;\;011\,340\;\;004\,995\;\;002\,002 \\
000\,715\;\;000\,220\;\;000\,055\;\;000\,010\;\;000\,001.
\end{array}
$$
For $x=1\;\;0000\,0000$,
$$
\begin{array}{l}
(x^5+x^4+\cdots+x+1)^{10} = 1\;\; 0000\,0001\;\; 0000\,0001\;\; 0000\,0001\;\; 0000\,0001\;\; 0000\,0001^{10} = \\
\ldots \;\;\ldots \;\;\ldots \;\;\ldots \;\ldots \;\;\;
0024\,3925\;\;0014\,7940\;\;\color{red}{0008\,5228} \\
0004\,6420\;\;0002\,3760\;\;0001\,1340\;\;0000\,4995\;\;0000\,2002\\
0000\,0715\;\;0000\,0220\;\;0000\,0055\;\;0000\,0010\;\;0000\,0001.
\end{array}
$$