My question comes from Exercise 6.9(b) of Statistical Inference by Casella and Berger:
6.9: Find a minimal sufficient statistic for $\theta$
(b) $f(x|\theta) = e^{-(x-\theta)}, \quad \theta < x < \infty, \quad -\infty < \theta < \infty$.
This exercise appears to be a straighforward application of the following theorem:
Theorem 6.2.13. Let $f(\mathbf{x}|\theta)$ be the pmf or pdf of a sample $\mathbf{X}$. Suppose there exists a function $T(\mathbf{x})$ such that, for every two sample points $\mathbf{x}$ and $\mathbf{y}$, the ratio $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of $\theta$ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistic for $\theta$.
A little algebra shows that $$\frac{f(\mathbf{x}|\theta)}{f(\mathbf{y}|\theta)} = \exp\left(\sum_{i=1}^{n} (y_i - x_i) \right) \frac{I_{(\theta,\infty)}(\mathbf{x}_{(1)})}{ I_{(\theta,\infty)}(\mathbf{y}_{(1)})}$$
for all $\mathbf{x},\mathbf{y} \in (\theta,\infty)^n$. Now it's clear that the desired implication "$f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of $\theta$ if and only if $T(\mathbf{x}) = T(\mathbf{y})$" depends solely upon the above ratio of indicator functions. If $\mathbf{x}_{(1)} = \mathbf{y}_{(1)}$, then $\frac{I_{(\theta,\infty)}(\mathbf{x}_{(1)})}{ I_{(\theta,\infty)}(\mathbf{y}_{(1)})} = 1$ for all $\theta \in (-\infty, \mathbf{y}_{(1)})$ (and undefined on $[\mathbf{y_{(1)}},\infty)$), so the ratio is constant in $\theta$ for all $\theta$ where it is defined. And if $\mathbf{x}_{(1)} < \mathbf{y}_{(1)}$, then
\begin{align*}
\frac{I_{(\theta,\infty)}(\mathbf{x}_{(1)})}{ I_{(\theta,\infty)}(\mathbf{y}_{(1)})} &=
\begin{cases}
1 & \text{ if } \theta \in (-\infty,\mathbf{x}_{(1)}) \\[2pt]
0 & \text{ if } \theta \in [\mathbf{x}_{(1)},\mathbf{y}_{(1)})
\end{cases}
\end{align*}
(and is undefined for $\theta \geq \mathbf{y}_{(1)}$), so in this case the ratio clearly depends on $\theta$. But if $\mathbf{y}_{(1)} < \mathbf{x}_{(1)}$, then $\frac{I_{(\theta,\infty)}(\mathbf{x}_{(1)})}{ I_{(\theta,\infty)}(\mathbf{y}_{(1)})} = 1$ for all $\theta < \mathbf{y}_{(1)}$ (and undefined everywhere else). If the ratio is constant as a function of $\theta$ if and only if $\mathbf{x}_{(1)} = \mathbf{y}_{(1)}$, then we can straightforwardly conclude that $T(\mathbf{X}_{(1)})$ is a minimal sufficient statistic. But in the case where $\mathbf{y}_{(1)} < \mathbf{x}_{(1)}$, is the ratio of indicator functions considered to be constant as a function of $\theta$? Why or why not? Any feedback would be appreciated.
Edit 2/23/22: As @Henry mentioned in the comments, the situation is clarified if we change the part of the theorem that says
the ratio $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of $\theta$
to the new statement
there exists some $k(\mathbf{x},\mathbf{y}) > 0$ (a strictly positive function which does not depend on $\theta$) such that $f(\mathbf{x}∣\theta)=k(\mathbf{x},\mathbf{y})f(\mathbf{y}∣\theta)$ for all $\mathbf{x}, \mathbf{y}$ in the sample space and all $\theta \in \Theta$.
I would just like some "official" confirmation of this in the form of a theorem in a textbook. Any relevant references would be greatly appreciated.