Theorem statement: $\displaystyle \Delta^dF_n(x) = \sum_{k=0}^{n-1} \binom{n-1}{k} \Delta^{d-1}F_{n-1-k}(x)(-1)^k$
Proof:
$$\begin{align} F_n(x) &= x^n =\Delta^0F(x) \\[2ex] \Delta^1F_n(x) &= x^n -(x-1)^n \\[2ex] &= x^n - \sum_{k=0}^n\binom nk x^{n-k}(-1)^k \\[2ex] &= \sum_{k=0}^{n-1}\binom{n-1}{k}x^{n-k}(-1)^{k} \\[2ex] &=x^{n-1} -(n-1)x^{n-2} + \ldots \pm (n-1)x^2 \mp 1 \\[2ex] &= \sum_{k=0}^{n-1}\binom{n-1}{k}\Delta^0F_{n-1-k}(x)(-1)^k\end{align}$$
$$\begin{align}\Delta^2F_n(x) &=\Delta^1F_n(x) -\Delta^1F_n(x-1) \\[2ex] &= \sum_{k=0}^{n-1}\binom{n-1}{k}x^{n-k}(-1)^k - \sum_{k=0}^{n-1}\binom{n-1}{k}(x-1)^{n-k}(-1)^k \\[2ex] & = x^{n-1}-(x-1)^{n-1}- (n-1)x^{n-2} - (n-1)(x-1)^{n-2} +\ldots \pm(n-1)x^2 -(n-1)(x-1)^2 \\[2ex] & = \sum_{k=0}^{n-1} \binom{n-1}{k}\Delta^1F_{n-1-k}(x)(-1)^k\end{align}$$
$$\begin{align} \Delta^3F_n(x) &= \Delta^2F_n(x) - \Delta^2F_n(x-1) \\[2ex] &= \sum_{k=0}^{n-1} \binom{n-1}{k}\Delta^1F_{n-1-k}(x)(-1)^k -\sum_{k=0}^{n-1} \binom{n-1}{k}\Delta^1F_{n-1-k}(x-1)(-1)^k \\[2ex] &= \sum_{k=0}^{n-1} \binom{n-1}{k} (\Delta^1F_{n-1-k}(x) - \Delta^1F_{n-1-k}(x-1))(-1)^k \\[2ex] &= \sum_{k=0}^{n-1} \binom{n-1}{k} \Delta^2F_{n-1-k}(x)(-1)^k \end{align}$$
$$\therefore \Delta^dF_n(x) = \sum_{k=0}^{n-1} \binom{n-1}{k} \Delta^{d-1}F_{n-1-k}(x)(-1)^k$$
Is this correct? If not, where did I go wrong?
If it is correct, what can I do with this? Where can I apply the derived identity?
I originally set out to prove that $\Delta^n F_n(x) = c \ \forall x$, but I'm not sure if I'm any closer to this now.