Let $\{s_i\}_i$ be a sequence of integers such that $s_i>\sum\limits_{j=1}^{i-1}s_j$ with $s_1=1.$ For $\alpha \in (0,1)$ define the $n \times n$ antisymmetric matrix $A(n)$ by induction:
$A(2)=\left(\begin{array}{cc}0 & \alpha^{s_1} \\ -\alpha^{s_1} & 0\end{array}\right);$
$A(n)_{ij} := A(n-1)_{ij},$ for $1<i<j<n,$ and $A(n)_{in}:= \alpha^{s_{p+i}},$ for $i=1,\cdots, n-1,$ where $p=\frac{(n-1)(n-2)}{2}.$
Hence $A(3)=\left(\begin{array}{ccc}0 & \alpha^{s_1} & \alpha^{s_2}\\ -\alpha^{s_1} & 0 & \alpha^{s_3} \\ -\alpha^{s_2} & -\alpha^{s_3} & 0 \end{array}\right)$,
$A(4)=\left(\begin{array}{cccc}0 & \alpha^{s_1} & \alpha^{s_2} & \alpha^{s_4}\\ -\alpha^{s_1} & 0 & \alpha^{s_3} & \alpha^{s_5} \\ -\alpha^{s_2} & -\alpha^{s_3} & 0 & \alpha^{s_6} \\ -\alpha^{s_4} & -\alpha^{s_5} & -\alpha^{s_6}& 0 \end{array}\right),$ and so on.
Let us denote by $\mathrm{pf}(A)$, the pfaffian (https://en.wikipedia.org/wiki/Pfaffian) of an antisymmetric matrix $A$. I wish to prove that
$$0<\mathrm{pf}(A(n))<\mathrm{pf}(A(n-2))<1,$$ for an even $n.$
I am able to prove the above statement for $n=2,4,6$ by explicit computations of the pfaffians. Can anyone help me proving the statement?
Edit: I guess the following should be true for each $n$:
$\mathrm{pf}(A(n))=\alpha^{m(n)_1}-\alpha^{m(n)_2}+\alpha^{m(n)_3}-\alpha^{m(n)_4}+\cdots +\alpha^{m(n)_r},$ for a strictly increasing sequence of numbers $m(n)_1,m(n)_2,\cdots, m(n)_r,$ where $r$ is odd.
If we can show this, we are through.