Let $f$ be a measurable function belonging to a Besov space of non-positive regularity $B^{\gamma}_{p,\infty}$, where $\gamma\le 0$, $p\in[1,\infty]$. Is it true that $|f|$ belongs to the same space and $\|\,|f|\,\|_{B^{\gamma}_{p,\infty}}\le C\|f\|_{B^{\gamma}_{p,\infty}}$ for some universal $C=C(\gamma,p)>0$?
Note that if $\gamma\in(0,1)$, then the answer is positive. Indeed, in this case $$ \|f\|_{B^{\gamma}_{p,\infty}}=\|f\|_{L_p(\mathbb{R}^d)}+\sup_{h\in[0,1]^d} h^{-\gamma}\|f(h+\cdot)-f\|_{L_p(\mathbb{R}^d)}, $$ and clearly $|\,|f(h+\cdot)|-|f|\,|\le |f(h+\cdot)-f\,|$. Thus, $\|\,|f|\,\|_{B^{\gamma}_{p,\infty}}\le \|f\|_{B^{\gamma}_{p,\infty}}$
I wonder whether the same is true for non-positive $\gamma$.
UPD: If $\gamma<0$, the answer is negative. The counter-example suggested by user Gerw is $f(x)=\sin nx$.
What if $\gamma=0$? Clearly, the answer is positive for the space $B^0_{2,2}=L_2$, but what about the space $B^0_{p,\infty}$?