5

Given a formal system $D$ where the axioms are the same as in Hilbert system for propositional logic and the inference rule is $$\frac{a\rightarrow b, \quad a\rightarrow \neg b}{\neg a}$$ I need to answer:

  1. Is the system sound (if $\vdash_D \varphi$ then $\models \varphi$)?
  2. Is the system strongly sound (if $\Sigma\vdash_D \varphi$ then $\Sigma\models \varphi$ for every $\Sigma$ set of propositions)?
  3. Is the system strongly complete (if $\models \varphi$ then $\vdash_D \varphi$)?

I managed to answer questions 1 & 2, but I can't find an answer for 3, neither prove strong completeness nor find a counterexample.

  • 1
    What do you mean by "sound", "strongly sound" and "strongly complete"? – Taroccoesbrocco Jun 28 '21 at 18:12
  • sound/soundness - if $\vdash \varphi$ then $\models \varphi$

  • strong soundness - if $\Sigma \vdash \varphi$ then $\Sigma \models \varphi$ where $\Sigma$ is a set of propositions

  • strongly completeness - if $\models \varphi$ then $\vdash \varphi$

  • – CforLinux Jun 28 '21 at 18:28
  • What are the axioms and the other inference rules in your Hilbert system? – Taroccoesbrocco Jun 28 '21 at 18:45
  • there are no other inference rules, the axioms are the same as the Hilbert system i.e $$(\varphi\rightarrow (\psi\rightarrow\varphi))$$ $$(\varphi\rightarrow (\psi\rightarrow\theta))\rightarrow ((\varphi \rightarrow \psi ) \rightarrow (\varphi\rightarrow\theta))$$ $$(\neg\psi\rightarrow\neg\varphi )\rightarrow (\varphi\rightarrow\psi)$$ – CforLinux Jun 28 '21 at 19:08