Linear logic is a certain variant of sequent calculus that does not generally allow contraction and weakening. Sequent calculus does admit the cut rule: given contexts $\Gamma$, $\Sigma$, $\Delta$, and $\Pi$, and a proposition $A$, we can make the inference
$$\frac{\Gamma \vdash A, \Delta \qquad \Sigma, A \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}.$$
So what I'm wondering is if it's also possible to derive a "cut rule with no $A$":
$$\frac{\Gamma \vdash \Delta \qquad \Sigma \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}.$$