2

I'm trying to show that if we have $T \in B(H,H)$ for some separable Hilbert space $H$ such that for any orthonormal basis $\{e_k \}_ k$ we have $\sum_{k=1}^{\infty }||Te_k||^2 <\infty $, then $T $ compact .

I'm trying to show that $T$ is the operator limit of bounded finite rank (and hence compact) operators.

So I let $T_n x =\sum_{k=1}^{n }\langle x, e_k \rangle T(e_k) .$

But I can't show this converges to $T$.

Anonmath101
  • 1,890

1 Answers1

5

Note that \begin{align*} \left\|\sum_{k\geq n+1}\left<x,e_{k}\right>Te_{k}\right\|&\leq\sum_{k\geq n+1}\left|\left<x,e_{k}\right>\right|\cdot\|Te_{k}\|\\ &\leq\left(\sum_{k\geq n+1}\left|\left<x,e_{k}\right>\right|^{2}\right)^{1/2}\left(\sum_{k\geq n+1}\|Te_{k}\|^{2}\right)^{1/2}\\ &\leq\|x\|\cdot\left(\sum_{k\geq n+1}\|Te_{k}\|^{2}\right)^{1/2}\\ &\rightarrow 0 \end{align*} as $n\rightarrow\infty$.

user284331
  • 56,315
  • So: $$T(x)=\sum_{k\ge1}\langle x,e_k\rangle T(e_k)$$For any continuous linear operator $T$ but in general $|T_n-T|$ does not tend to $0$? This is strange – FShrike Mar 27 '22 at 21:19