I would love some feedback on this proof. I've spent forever working on it. At this point my mind is too jumbled to realize if I can make it more efficient. I feel confident in it, but I will note the areas I felt less sure about. Any feedback would be appreciated!
Suppose $X$ is a Banach space, and $(x_{mn})$ is a doubly indexed sequence in $X$ such that $$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}||x_{mn}||<\infty.$$ Prove that $$\sum_{m=1}^{\infty}\Bigg(\sum_{n=1}^{\infty}x_{mn}\Bigg)=\sum_{n=1}^{\infty}\Bigg(\sum_{m=1}^{\infty}x_{mn}\Big).$$
We first note that $$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}||x_{mn}||=\sum_{m=1}^{\infty}\Bigg(\sum_{n=1}^{\infty}||x_{mn}||\Bigg)=\sum_{n=1}^{\infty}\Bigg(\sum_{m=1}^{\infty}||x_{mn}||\Bigg),$$ which implies that \begin{align} \sum_{m=1}^M\Bigg(\sum_{n=1}^{\infty}||x_{mn}||\Bigg)&<\infty,\hspace{5 mm}\forall M\in\mathbb{N}\hspace{5 mm}(1)\\ \sum_{n=1}^N\Bigg(\sum_{m=1}^{\infty}||x_{mn}||\Bigg)&<\infty,\hspace{5 mm}\forall N\in\mathbb{N}\hspace{5 mm}(2) \end{align}
Then, for any $\epsilon>0$ we may find a $K$ so that \begin{align*} \bigg|\sum_{m=1}^{m_1}\bigg(\sum_{n=1}^{\infty}||x_{mn}||\bigg)-\sum_{m=1}^{m_2}\bigg(\sum_{n=1}^{\infty}||x_{mn}||\bigg)\bigg|&<\frac{\epsilon}{2}\\ \bigg|\sum_{n=1}^{n_1}\bigg(\sum_{m=1}^{\infty}||x_{mn}||\bigg)-\sum_{n=1}^{n_2}\bigg(\sum_{m=1}^{\infty}||x_{mn}||\bigg)\bigg|&<\frac{\epsilon}{2}. \end{align*} whenever $m_1,m_2,n_1,n_2>K$. We may use this to show that $\sum_{m=1}^M\sum_{n=1}^Nx_{mn}$ is Cauchy for any $M,N>K$. Without loss of generality, there are two cases to consider. Either $m_1>m_2$ and $n_1>n_2$ or $m_1>m_2$ and $n_2>n_1$. In the first case we see that \begin{align*} \bigg|\bigg|\sum_{m=1}^{m_1}\sum_{n=1}^{n_1}x_{mn}-\sum_{m=1}^{m_2}\sum_{n=1}^{n_2}x_{mn}\bigg|\bigg|&=\bigg|\bigg|\sum_{m=m_2+1}^{m_1}\sum_{n=1}^{n_1}x_{mn}+\sum_{m=1}^{m_1}\sum_{n=n_2+1}^{n_1}\bigg|\bigg|\\ &\leq \sum_{m=m_2+1}^{m_1}\sum_{n=1}^{n_1}||x_{mn}||+\sum_{m=1}^{m_1}\sum_{n=n_2+1}^{n_1}||x_{mn}||\\ &\leq\sum_{m=m_2+1}^{m_1}\sum_{n=1}^{\infty}||x_{mn}||+\sum_{n=n_2+1}^{n_1}\sum_{m=1}^{\infty}||x_{mn}||\\ &<\epsilon. \end{align*} While the second case gives us \begin{align*} \bigg|\bigg|\sum_{m=1}^{m_1}\sum_{n=1}^{n_1}x_{mn}-\sum_{m=1}^{m_2}\sum_{n=1}^{n_2}x_{mn}\bigg|\bigg|&=\bigg|\bigg|\sum_{m=m_2+1}^{m_1}\sum_{n=1}^{n_1}x_{mn}-\sum_{m=1}^{m_1}\sum_{n=n_1+2}^{n_2}x_{mn}\bigg|\bigg|\\ &\leq \sum_{m=m_2+1}^{m_1}\sum_{n=1}^{n_1}||x_{mn}||+\sum_{n=n_1+2}^{n_2}\sum_{m=1}^{m_1}||x_{mn}||\\ &\leq \sum_{m=m_2+1}^{m_1}\sum_{n=1}^{\infty}||x_{mn}||+||\sum_{n=n_1+2}^{n_2}\sum_{m=1}^{\infty}||x_{mn}||\\ &<\epsilon. \end{align*} Since this inequality arises with $m_1,m_2,n_1,n_2$ chosen independently, we are able to take their limits independently in order to arrive at the desired equality. This is made rigorous by the following argument (the following is an area of relative uncertainty for me. I believe it is valid but was somewhat not confident). Given $\epsilon>0$ we find $K_1$ so that $$\bigg|\bigg|\sum_{m=1}^{m_1}\sum_{n=1}^{n_1}x_{mn}-\sum_{m=1}^{m_2}\sum_{n=1}^{n_2}x_{mn}\bigg|\bigg|<\frac{\epsilon}{2}$$ whenever $m_1,m_2,n_1,n_2>K_1$. We then find $K_2$ such that $$\bigg|\bigg|\sum_{m=1}^{m_2}\sum_{n=1}^{\infty}x_{mn}-\sum_{m=1}^{m_2}\sum_{n=1}^{n_2}x_{mn}\bigg|\bigg|<\frac{\epsilon}{2}$$ whenever $n_2>K_2$, which is guaranteed by $(1)$. Then, letting $K>\max(K_1,K_2)$, it follows that \begin{align*} \bigg|\bigg|\sum_{m=1}^{m_1}\sum_{n=1}^{n_1}x_{mn}-\sum_{m=1}^{m_2}\sum_{n=1}^{\infty}x_{mn}\bigg|\bigg|&\leq \bigg|\bigg|\sum_{m=1}^{m_1}\sum_{n=1}^{n_1}x_{mn}-\sum_{m=1}^{m_2}\sum_{n=1}^{n_2}x_{mn}\bigg|\bigg|\\ &+\bigg|\bigg|\sum_{m=1}^{m_2}\sum_{n=1}^{\infty}x_{mn}-\sum_{m=1}^{m_2}\sum_{n=1}^{n_2}x_{mn}\bigg|\bigg|\\ <\epsilon \end{align*} whenever $m_1,m_2,n_1>K$. We may repeat this process to arrive at $$\bigg|\bigg|\sum_{m=1}^{\infty}\bigg(\sum_{n=1}^{\infty}x_{mn}\bigg)-\sum_{n=1}^{\infty}\bigg(\sum_{m=1}^{\infty}x_{mn}\bigg)\bigg|\bigg|<\epsilon$$ for all $\epsilon$.