Hint $\quad i^3 + i^4 +\cdots+ i^k = 0\iff k\equiv 2 \:\pmod{\! 4}$
Generally suppose $\,z\,$ has order $\,m>1,\,$ thus $\,z^n = 1\iff m\mid n,\,$ so
Lemma $\ \ f := z^j + z^{j+1} + \cdots + z^k = 0 \iff k \equiv j- 1\pmod{\! m},\ $ for $\,z\neq 0,1$
Proof $\,\ f = z^j \ (1+z+\cdots + z^{k-j}) \;=\; z^j\,\ \dfrac{1-z^{N}}{\!\!\!1-z} = 0\iff m\mid\underbrace{ N\!=\!k\!-\!j\!+\!1}_{\!\#\rm summands}$
Generally for $\:\!z\,$ in any ring we have:
Theorem $\ \ m\mid N \,\Rightarrow\, f = 0, \ $ if $\:\color{#0a0}{\!1\!-\!z\ \rm is\ cancellable}$.
Conversely $\,\ f = 0^{\phantom{|^|}}\!\Rightarrow\, m\mid N,\,$ if $\, \color{#c00}{z\,\ \rm is\ cancellable}\,$ (or $\,j = 0)$
Proof $\,\ $ As above we have: $\ (1\!-\!z)f = z^j\,(1\!-\!z^N)$.
So $\ m\mid N\,\Rightarrow\, z^N = 1\,\Rightarrow\, (\color{#0a0}{1\!-\!z})f= 0,\,$ $\color{#0a0}{\rm so}\,\ f = 0,\,$
and, conversely, we have: $\ f = 0\,\Rightarrow \color{#c00}z^j(1\!-\!z^N) = 0,\ \color{#c00}{\rm so}\,\ z^N = 1,\,$ so $\:m\mid N$.
Corollary $\ f = 0\iff m\mid N,\,$ if $\,z\neq \color{#c00}0,\color{#0a0}1\,$ in a domain (e.g. in any field such as $\Bbb C$ in OP, or $\,\Bbb Z_p =$ integers $\!\bmod p\,$ prime), where elements are $\rm\color{#c00}{cancell}\color{#0a0}{able}$ iff invertible iff nonzero.