Let $\Omega$ be a bounded domain of $\mathbb{R}^d$. We define the Sobolev space $H^1(\Omega)$ by \begin{align*} H^1(\Omega)=\{f \in L^2(\Omega,m) \mid |\nabla f| \in L^2(\Omega)\}. \end{align*} Here, $m$ denotes the Lebesgue measure on $\Omega$, and $\nabla f$ is the distributional gradient of $f$. The Neumann Laplacian $(L,\text{Dom}(L))$ on $\Omega$ is defined as \begin{align*} \text{Dom}(L)&=\left\{f \in L^2(\Omega,m) : H^1(\Omega) \ni g \mapsto \int_{\Omega}\nabla f\cdot \nabla g\,dm \text{ is continuous on $L^2(\Omega,m)$}\right\} \\ -\int_{\Omega}g Lf\,dm&=\int_{\Omega} \nabla f\cdot \nabla g\,dm,\quad f \in \text{Dom}(L),\,g \in H^1(\Omega). \end{align*}
Question. When $\partial \Omega$ is Lipschitz, we define \begin{align*} C=\left\{g \in C^2(\overline{\Omega}) :\frac{\partial g}{\partial n}(x)=0,\quad \sigma\text{-a.e.} \right\} \end{align*} Here, we denote by $n$ the inward unit normal vector on $\partial \Omega$, and $\sigma$ is the surface measure on $\partial D$. Can we show that $\{(g,Lg) \mid g \in C\}$ is a dense subspace of $\{(f,Lf) \mid f \in \text{Dom}(L)\}$ with respect to the $L^2$-norm? This means that $C$ is a core of $(L,\text{Dom}(L))$.
Although this fact should be valid, I do not know the proof.
Please let me know if you have any references.