It is not true as this example from Wikipedia (https://en.wikipedia.org/wiki/Lipschitz_continuity) proves:
Let $f:[0,1]\to\mathbb{R},\, f(x)=x^{\frac{3}{2}}\sin(\frac{1}{x}),\,x>0,\, f(0)=0$. Then it's derivate outside $0$ is $f^`(x)=\frac{3}{2}x^{\frac{1}{2}}\sin(\frac{1}{x})-x^{-\frac{1}{2}}\cos(\frac{1}{x})$ and note that $\limsup_{x\downarrow 0}|f^´(x)|=\infty$.
Furthermore $f$ is differentiable in $0$ since
\begin{equation}
\lim_{h\downarrow 0}\left\lvert\frac{h^{\frac{3}{2}}\sin(\frac{1}{h})}{h}\right\rvert\leq\lim_{h\downarrow 0}\left\lvert h^{\frac{1}{2}}\right\rvert=0 \, ,
\end{equation}
so $f$ actually meets your requirements.
But the unbounded derivative outside $0$ gives us that there is no $\epsilon > 0$ and $L\geq0$ such that $|f(x)-f(y)|\leq L|x-y|\, \forall\, x,\,y\in[0,\epsilon]$.