"The main purpose of this note is pedagogical."
i.e.
$$a^{2}+ b^{2}+ c^{2}- ab- bc- ca=\left ( c- a \right )^{2}- \left ( a- b \right )\left ( b- c \right )$$
$$b^{2}- 4ac=\left ( c- a \right )^{2}- \left ( a- b+ c \right )\left ( a+ b+ c \right )$$
The right sides has fewer multiplication signs than the left ones. A famous application, what I know most that related to these results is shortening the running time of programming. I wondered about the method that Strassen did use to minimize the number of multiplication signs like that. I need to the help, thanks a real lot !
Her view (@VeronicaPhan, June 9 '21). However, should not be up to which way of decomposition. The only solution is to find the perfect-fitting decomposition in each scenario.
For the above example of mine, that is $a^{2}+ b^{2}+ c^{2}- ab- bc- ca= M^{2}+ N\left ( M+ N \right )\quad{\rm with}\;M:=c- a\!,{\rm and}\;N:=a- b.$
Interpolative decomposition kills it in an unnatural way
$$\begin{bmatrix} 1 & -1 & 0\\ 0 & 1 & -1\\ -1 & 0 & 1 \end{bmatrix}= \begin{bmatrix} 1 & -1\\ 0 & 1\\ -1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 & -1\\ 0 & 1 & -1 \end{bmatrix}= \begin{bmatrix} -1 & 1\\ 0 & -1\\ 1 & 0 \end{bmatrix}\begin{bmatrix} -1 & 0 & 1\\ 0 & -1 & 1 \end{bmatrix}\!.$$
Hence $a^{2}+ b^{2}+ c^{2}- ab- bc- ca= \left ( c- a \right )\!^{\!2}- \left ( a- b \right )\!\left ( b- c \right )\!.$