In my undergraduate course I had to prove this:$ \nabla \cdot (u \cdot v) = u \cdot \nabla(v) + v \cdot \nabla(u)$
But I believe that statement is wrong, I think it should be the following: $\nabla \cdot (u \cdot v)= \partial^{j} (u^i v^{i}) = u^{i} \partial^{j} v^{i} + v^{i} \partial^{j} u^{i} = \nabla v \cdot u + \nabla u \cdot v $
Here the "dot product" does not commute since the gradient of a vector is a matrix and the dot product of a vector with a matrix is non commutative like this:
$\nabla v \cdot u = (\partial ^{j} v^{i} e^{j} \otimes e^{i}) \cdot (u^{k} e^{k}) = \partial ^{j} v^{i} u^{i} = u^{i} \partial ^{j} v^{i}$
$u \cdot \nabla v = (u^{k} e^{k}) \cdot (\partial ^{j} v^{i} e^{j} \otimes e^{i}) = u^{j} \partial ^{j} v^{i}$
$\therefore \nabla v \cdot u \neq u \cdot \nabla v$
My questions is, I'm doing something wrong for reaching this result:
$\nabla \cdot (u \cdot v)= \nabla v \cdot u + \nabla u \cdot v $
Instead of this:
$ \nabla \cdot (u \cdot v) = u \cdot \nabla(v) + v \cdot \nabla(u)$
Sorry, I'm trying to understand what are the definitions your are using.
– FeedbackLooper Nov 05 '20 at 17:56